Summary

की पहचान<em> स्लीपिंग ब्यूटी</em> Linker की मध्यस्थता पीसीआर का उपयोग कर ठोस ट्यूमर में Transposon सम्मिलन

Published: February 01, 2013
doi:

Summary

एक निष्पक्ष दृष्टिकोण का उपयोग carcinogenesis के अज्ञात ड्राइवरों की पहचान का एक तरीका वर्णित है. विधि का उपयोग करता<em> स्लीपिंग ब्यूटी</em> Transposon एक यादृच्छिक विशिष्ट ऊतकों को निर्देशित उत्परिवर्तजन के रूप में. Transposon सम्मिलन कि ट्यूमर गठन ड्राइव के जीनोमिक मानचित्रण उपन्यास ओंकोजीन और ट्यूमर शमन जीनों की पहचान

Abstract

Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer1. Unfortunately these drivers are hidden within a much larger number of passenger anomalies in the genome that do not directly contribute to tumor formation. Another aspect of the cancer genome is that there is considerable genetic heterogeneity within similar tumor types. Each tumor can harbor different mutations that provide a selective advantage for tumor formation2. Performing an unbiased forward genetic screen in mice provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The Sleeping Beauty (SB) transposon system is one such method3. The SB system utilizes mobile vectors (transposons) that can be inserted throughout the genome by the transposase enzyme. Mutations are limited to a specific cell type through the use of a conditional transposase allele that is activated by Cre Recombinase. Many mouse lines exist that express Cre Recombinase in specific tissues. By crossing one of these lines to the conditional transposase allele (e.g. Lox-stop-Lox-SB11), the SB system is activated only in cells that express Cre Recombinase. The Cre Recombinase will excise a stop cassette that blocks expression of the transposase allele, thereby activating transposon mutagenesis within the designated cell type. An SB screen is initiated by breeding three strains of transgenic mice so that the experimental mice carry a conditional transposase allele, a concatamer of transposons, and a tissue-specific Cre Recombinase allele. These mice are allowed to age until tumors form and they become moribund. The mice are then necropsied and genomic DNA is isolated from the tumors. Next, the genomic DNA is subjected to linker-mediated-PCR (LM-PCR) that results in amplification of genomic loci containing an SB transposon. LM-PCR performed on a single tumor will result in hundreds of distinct amplicons representing the hundreds of genomic loci containing transposon insertions in a single tumor4. The transposon insertions in all tumors are analyzed and common insertion sites (CISs) are identified using an appropriate statistical method5. Genes within the CIS are highly likely to be oncogenes or tumor suppressor genes, and are considered candidate cancer genes. The advantages of using the SB system to identify candidate cancer genes are: 1) the transposon can easily be located in the genome because its sequence is known, 2) transposition can be directed to almost any cell type and 3) the transposon is capable of introducing both gain- and loss-of-function mutations6. The following protocol describes how to devise and execute a forward genetic screen using the SB transposon system to identify candidate cancer genes (Figure 1).

Protocol

1. प्रजनन और ट्रांसजेनिक जानवर की उम्र अपने प्रयोग के लिए उपयुक्त ट्रांसजेनिक चूहों के उपभेदों का चयन करें. में एक सशर्त Transposase माउस, transposons की एक concatamer शरण माउस, और एक माउस वांछित कैंसर के लिए मूल की कोशिका…

Representative Results

प्रजनन की योजना के बाद स्थापित किया गया है, प्रजनकों हर 19-21 दिनों में एक कूड़े का उत्पादन करना चाहिए. कूड़े के आकार के बीच 5 और 12 पिल्ले प्रजनकों और आनुवंशिक पृष्ठभूमि की उम्र के आधार पर अलग अलग होंगे. इसके ?…

Discussion

स्लीपिंग ब्यूटी transposon प्रणाली का उपयोग करते हुए एक आगे आनुवंशिक स्क्रीन परिवर्तन के कारण कैंसर की पहचान के लिए एक तरीका प्रदान करता है. उपयुक्त प्रमोटर का चयन करने के लिए किसी भी predisposing परिवर्तन करने क…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए मिनेसोटा विश्वविद्यालय में Branden Moriarity, डेविड Largaespada, और विन्सेन्ट Keng धन्यवाद करना चाहते हैं, और एडम Dupuy आयोवा विश्वविद्यालय में विकासशील प्रोटोकॉल ऊपर वर्णित में उनकी सहायता के लिए.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Sure-Seal Induction Chamber Brain Tree Scientific EZ-177
Cryovial Bioexpress C-3355-2
10% Buffered Formalin Sigma Aldrich HT501128-4L
Protein Precipitation solution Qiagen 158910
Cell lysis buffer Qiagen 158906
Proteinase K Qiagen 158920
RNase A Qiagen 158924
TE Buffer Promega V6232
BfaI New England Biolabs R0568S
NlaIII New England Biolabs R0125S
MinElute 96 well plates Qiagen 28051
QIAvac 96 Vacuum manifold Qiagen 19504
Multi-MicroPlate Genie, 120V Scientific Industries, Inc. SI-4000
T4 DNA ligase with 5x ligation Buffer Invitrogen 15224-041
BamHI New England Biolabs R0136S
25mM dNTPs Bioexpress C-5014-200
Platinum Taq Invitrogen 10966-034
FastStart Taq DNA Polymerase Roche 12032929001
Agarose Promega V3121
TAE Buffer Promega V4271
TE Buffer Promega V6232
Ethidium bromide Promega H5041

References

  1. Fearon, E. R., Vogelstein, B., et al. A genetic model for colorectal tumorigenesis. Cell. 61, 759-767 (1990).
  2. Wood, L. D., et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science. 318, 1108-1113 (2007).
  3. Ivics, Z., Hackett, P. B., Plasterk, R. H., Izsvák, Z. Molecular Reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells. Cell. 91, 501-510 (1997).
  4. Starr, T. K., Largaespada, D. A. Cancer gene discovery using the Sleeping Beauty transposon. Cell Cycle. 4, 1744-1748 (2005).
  5. Mueller, P. R., Wold, B. In Vivo Footprinting of a Muscle Specific Enhancer by Ligation Mediated PCR. Science. 246, 780-786 (1989).
  6. Bergemann, T. L., et al. New methods for finding common insertion sites and co-occurring common insertion sites in transposon- and virus-based genetic screens. Nucleic acids research. 40, 3822-3833 (2012).
  7. Copeland, N. G., Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nature Reviews Cancer. 10, 696-706 (2010).
  8. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J., Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature. 436, 272-276 (2005).
  9. Starr, T. K., et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science. 323, 1747-1750 (2009).
  10. Keng, V. W., et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature. 27, 264-274 (2009).
  11. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G., Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 436, 221-226 (2005).
check_url/50156?article_type=t

Play Video

Cite This Article
Janik, C. L., Starr, T. K. Identification of Sleeping Beauty Transposon Insertions in Solid Tumors using Linker-mediated PCR. J. Vis. Exp. (72), e50156, doi:10.3791/50156 (2013).

View Video