Summary

PrP som en ny tilnærming for å hindre smitte: Forberedelse og<em> In vitro</em> Antimikrobielle egenskaper av PrP

Published: April 09, 2013
doi:

Summary

Implant-associated infection is a significant clinical complication. This study describes an approach using platelet-rich plasma (PRP) to prevent implant-associated infections, presents the protocol for preparing PRP with constant platelet concentration, and reports the newly identified antimicrobial properties of PRP and related protocols for examining such antimicrobial properties in vitro.

Abstract

Implantat-assosiert infeksjon blir mer og mer utfordrende til helsevesenet over hele verden på grunn av økende antibiotikaresistens, overføring av antibiotikaresistente bakterier mellom dyr og mennesker, og de høye kostnadene ved behandling av infeksjoner.

I denne studien, utleverer vi en ny strategi som kan være effektive i å forebygge implantat-assosiert infeksjon basert på de potensielle antimikrobielle egenskapene blodplate-rik plasma (PRP). På grunn av sin veloverveide egenskaper for å fremme helbredelse, har PRP (et biologisk produkt) blitt stadig mer brukt for kliniske applikasjoner, inkludert ortopediske operasjoner, periodontal og muntlig operasjoner, maxillofacial operasjoner, plastisk kirurgi, idrettsmedisin, osv.

PRP kan være et avansert alternativ til konvensjonelle antibiotika behandlinger i å forebygge implantat-infeksjoner. Bruken av PRP kan være fordelaktig i forhold til konvensjonelle antibiotika behandlinger since PRP er mindre sannsynlig å indusere antibiotikaresistens og PRP er antimikrobiell og helbredende-fremme egenskaper kan ha en synergistisk effekt på infeksjon forebygging. Det er vel kjent at patogener og humane celler er racing for implantasjon overflater, og PRP egenskaper for å fremme helbredelse kan forbedre human cellefesting dermed redusere sjanser for infeksjon. I tillegg er PRP iboende biokompatibel, og sikker og fri fra risikoen av overførbare sykdommer.

For vår studie har vi valgt flere kliniske bakteriestammer som vanligvis finnes i ortopediske infeksjoner og undersøkt om PRP har in vitro antimikrobielle egenskaper mot disse bakteriene. Vi har utarbeidet PRP ved hjelp av en dobbelt sentrifugering tilnærming som tillater den samme blodplater konsentrasjonen som skal oppnås for alle prøver. Vi har oppnådd konsekvent antimikrobielle funn og fant ut at PRP har sterk in vitro antimikrobielle egenskaper mot bakterier som methicillin-sensitive og meticillinresistente Staphylococcus aureus, gruppe A streptokokker, og Neisseria gonorrhoeae. Derfor kan bruken av PRP har potensial for å hindre smitte og å redusere behovet for kostbare postoperativ behandling av implantat-assosierte infeksjoner.

Introduction

Implant-associated infection is a significant clinical complication. Staphylococcus aureus (S. aureus) is one of the most common microorganisms isolated from implant-associated infections. It is capable of producing a biofilm that covers the surfaces of implants and may lead to antibiotic-resistant infection 1,2. Treatment of implant-associated infection frequently requires long-term hospitalization for repeated debridements and prolonged parenteral antibiotic therapy. In antibiotic resistant cases, removal of the implant may be necessary. The rising resistance of bacteria to antibiotics has also been referred to by the Centers for Disease Control and Prevention (CDC) as “one of the world’s most pressing health problems.” In time, without the development of new and effective antimicrobial treatments, it is possible that multi-drug resistant pathogens will be untreatable with conventional antibiotics. Prevention of implant-associated infection is therefore important and novel prophylactic agents or approaches are needed for preventing such infections.

Platelet-rich plasma (PRP) is a concentration of autologous blood that contains over 30 growth factors which can help with bone and bone graft healing 3-5. The application of PRP to enhance bone regeneration and soft tissue maturation has been increasingly reported in clinics because of its high concentration of various growth factors released by platelets.

Several characteristics of PRP indicate that PRP may also have antimicrobial properties 6-9. PRP contains a large number of platelets, a high concentration of leukocytes (which may possess host-defense actions against bacteria and fungi), and multiple antimicrobial peptides 7,8,10. In a recent study of a large cohort of cardiac surgical patients, it was revealed that the intraoperative use of PRP-gel during wound closure significantly decreased the incidence of superficial and deep sternum infection 11. For these reasons and observations, we hypothesized that PRP, besides its well-studied healing-promoting properties, has antimicrobial properties. The potential advantages of using PRP to prevent infection may include: (i) PRP is less likely to induce resistance compared to conventional antibiotic treatments. (ii) PRP also has properties that promote healing which may have a synergistic effect on infection prevention; PRP’s healing-promoting properties could provide a seal to prevent bacterial attachment thereby reducing the odds for infection as pathogens and human cells are racing for implant surfaces 12,13. (iii) PRP is inherently biocompatible, and safe and free from the risk of transmissible diseases.

Our long-term goal is to use PRP as a new approach to prevent implant-associated infections. The aim of this study was to prepare PRP using a twice centrifugation approach, to examine PRP’s in vitro antimicrobial properties, and to describe the protocols for evaluating such antimicrobial properties.

Protocol

1. Preparation and Activation of PRP 1.1 Blood draw Anesthetize rabbit by inhalation of isoflurane (2% in O2 for induction and 1% for maintenance). Draw 2 ml 0.129 M tri-sodium citrate (an anticoagulent solution) into a 20 ml syringe. The tri-sodium citrate solution is prepared by dissolving 1.897 g tri-sodium citrate in 50 ml distilled H2O and filtering with a 0.22 μm sterile filter. Sterilize the rabbit ear using 70% ethanol. Dr…

Representative Results

PRP is reproducibly prepared using a twice centrifugation approach (Figure 1). PRP is found to present strong (up to 100-fold reduction in CFUs) in vitro antimicrobial properties against methicillin resistant S. aureus (MRSA) (Figure 3), which is commonly found in hospitals worldwide 14. Similarly, PRP has strong antimicrobial properties against methicillin sensitive S. aureus (MSSA), Group A Streptococcus, and Neisseria gonorrhoeae…

Discussion

Platelet-rich plasma has been increasingly used for clinical applications due to its healing-promoting properties 15-17. In the present study, PRP was presented as a new approach for infection prevention. PRP was found to have strong antimicrobial properties against MRSA, MSSA, Group A Streptococcus, and Neisseria gonorrhoeae. The major advantages of PRP, compared to conventional antibiotic treatments, for infection prevention include: (1) Current antibiotic therapies are facing challenges in…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Therwa Hamza, John E. Tidwell, Nina Clovis, and Suzanne Smith for experimental assistance and Suzanne Smith for proofreading. The authors also thank John Thomas, PhD for providing the bacterial clinical isolates and John B. Barnett, PhD for his support and the use of the biological safety lab at the Department of Microbiology, Immunology and Cell Biology at West Virginia University. The authors acknowledge financial support from the Osteosynthesis and Trauma Care Foundation and National Science Foundation (#1003907). Microscope experiments and image analysis were also performed in the West Virginia University Imaging Facility, which is supported in part by the Mary Babb Randolph Cancer Center and NIH grant P20 RR016440.

Animal use for blood draws were approved by the West Virginia University Institutional Animal Care and Use Committee. All experiments were executed in compliance with all relevant guidelines, regulations, and regulatory agencies.

Materials

Name of Reagent/Material Company Catalog Number Comments
Bovine thrombin King Pharmaceuticals, Inc 60793-215-05 Thrombin (bovine origin)
Calcium chloride King Pharmaceuticals, Inc 60793-215-05 10% calcium chloride
Ethanol Sigma-Aldrich E7023
Isoflurane Baxter 1001936060
Mueller Hinton broth Becton, Dickinson and Company 275710
Phosphate-buffered saline Sigma-Aldrich D8662
Tri-sodium citrate Sigma-Aldrich W302600
Tryptic soy agar Fisher Scientific R01202
Centrifuge Kendro Laboratory Products 750043077
Syringe filter Millipore SLGP033RS

References

  1. Gristina, A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 237, 1588-1595 (1987).
  2. Gristina, A. G., Costerton, J. W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J. Bone Joint Surg. Am. 67, 264-273 (1985).
  3. Everts, P. A., et al. Reviewing the structural features of autologous platelet-leukocyte gel and suggestions for use in surgery. Eur. Surg. Res. 39, 199-207 (2007).
  4. Marx, R. E. Platelet-rich plasma (PRP): what is PRP and what is not PRP. Implant. Dent. 10, 225-228 (2001).
  5. Toscano, N., Holtzclaw, D. Surgical considerations in the use of platelet-rich plasma. Compend. Contin. Educ. Dent. 29, 182-185 (2008).
  6. Cieslik-Bielecka, A., Gazdzik, T. S., Bielecki, T. M., Cieslik, T. Why the platelet-rich gel has antimicrobial activity?. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 103, 303-306 (2007).
  7. Yeaman, M. R. The role of platelets in antimicrobial host defense. Clin. Infect. Dis. 25, 951-970 (1997).
  8. Tang, Y. Q., Yeaman, M. R., Selsted, M. E. Antimicrobial peptides from human platelets. Infect Immun. 70, 6524-6533 (2002).
  9. El-Sharkawy, H., et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J. Periodontol. 78, 661-669 (2007).
  10. Krijgsveld, J., et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. 275, 20374-20381 (2000).
  11. Trowbridge, C. C., et al. Use of platelet gel and its effects on infection in cardiac surgery. J. Extra Corpor. Technol. 37, 381-386 (2005).
  12. Gristina, A. G., Naylor, P., Myrvik, Q. Infections from biomaterials and implants: a race for the surface. Med. Prog. Technol. 14, 205-224 (1988).
  13. Subbiahdoss, G., Kuijer, R., Grijpma, D. W., vander Mei, H. C., Busscher, H. J. Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater. 5, 1399-1404 (2009).
  14. Klevens, R. M., et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 298, 1763-1771 (2007).
  15. Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., Rodeo, S. A. Platelet-rich plasma: from basic science to clinical applications. Am. J. Sports Med. 37, 2259-2272 (2009).
  16. Carlson, N. E., Roach, R. B. Platelet-rich plasma: clinical applications in dentistry. J. Am. Dent. Assoc. 133, 1383-1386 (2002).
  17. Man, D., Plosker, H., Winland-Brown, J. E. The use of autologous platelet-rich plasma (platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery. Plast. Reconstr. Surg. 107, 229-237 (2001).
  18. Fridkin, S. K., et al. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997-2001. Clin. Infect. Dis. 36, 429-439 (1997).
  19. Jackson, C. R., Fedorka-Cray, P. J., Davis, J. A., Barrett, J. B., Frye, J. G. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J. Appl. Microbiol. 107, 1269-1278 (2009).
  20. Murray, C. K., et al. Recovery of multidrug-resistant bacteria from combat personnel evacuated from Iraq and Afghanistan at a single military treatment facility. Mil. Med. 174, 598-604 (2009).
  21. Durr, M., Peschel, A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun. 70, 6515-6517 (2002).
  22. Hancock, R. E. Peptide antibiotics. Lancet. 349, 418-422 (1997).
  23. Dohan Ehrenfest, D. M., Rasmusson, L., Albrektsson, T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 27, 158-167 (2009).
  24. Kalen, A., Wahlstrom, O., Linder, C. H., Magnusson, P. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors. Biochem. Biophys. Res. Commun. 375, 261-264 (2008).
  25. Weibrich, G., Kleis, W. K., Hafner, G., Hitzler, W. E. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J. Craniomaxillofac. Surg. 30, 97-102 (2002).
  26. Mazzucco, L., Balbo, V., Cattana, E., Guaschino, R., Borzini, P. Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet, RegenPRP-Kit, Plateltex and one manual procedure. Vox Sang. 97, 110-118 (2009).
  27. Lei, H., Gui, L., Xiao, R. The effect of anticoagulants on the quality and biological efficacy of platelet-rich plasma. Clin. Biochem. 42, 1452-1460 (2009).
  28. Redler, L. H., Thompson, S. A., Hsu, S. H., Ahmad, C. S., Levine, W. N. Platelet-rich plasma therapy: a systematic literature review and evidence for clinical use. Phys. Sportsmed. 39, 42-51 (2011).
  29. Whitman, D. H., Berry, R. L., Green, D. M. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 55, 1294-1299 (1997).
  30. Anitua, E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int. J. Oral Maxillofac. Implants. 14, 529-535 (1999).
  31. Whitman, D. H., Berry, R. L. A technique for improving the handling of particulate cancellous bone and marrow grafts using platelet gel. J. Oral. Maxillofac. Surg. 56, 1217-1218 (1998).
  32. Currie, L. J., Sharpe, J. R., Martin, R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast. Reconstr. Surg. 108, 1713-1726 (2001).
  33. Nikulin, A. A. Effect of calcium, thrombin and nucleotides (ADP, cAMP, cGMP) on blood platelet glycolysis and energy metabolism. Farmakol. Toksikol. 43, 585-590 (1980).
  34. Hantgan, R. R., Taylor, R. G., Lewis, J. C. Platelets interact with fibrin only after activation. Blood. 65, 1299-1311 (1985).
  35. Hantgan, R., Fowler, W., Erickson, H., Hermans, J. Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb. Haemost. 44, 119-124 (1980).
  36. Li, B., Jiang, B., Boyce, B. M., Lindsey, B. A. Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials. 30, 2552-2558 (2009).
  37. Li, B., Jiang, B., Dietz, M. J., Smith, E. S., Clovis, N. B., Rao, K. M. K. Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J. Orthop. Res. 28, 48-54 (2010).
  38. Boyce, B. M., Lindsey, B. A., Clovis, N. B., Smith, E. S., Hobbs, G. R., Hubbard, D. F., Emery, S. E., Barnett, J. B., Li, B. Additive effects of exogenous IL-12 supplementation and antibiotic treatment in infection prophylaxis. J. Orthop. Res. 30 (2), 196-202 (2012).
check_url/50351?article_type=t

Play Video

Cite This Article
Li, H., Li, B. PRP as a New Approach to Prevent Infection: Preparation and In vitro Antimicrobial Properties of PRP. J. Vis. Exp. (74), e50351, doi:10.3791/50351 (2013).

View Video