Summary

生物荧光原位模型胰腺癌进展

Published: June 28, 2013
doi:

Summary

改进胰腺癌生物学的理解是迫切需要的,以便更好的治疗选择治疗胰腺癌的发展。为了满足这一需求,我们展示了胰脏癌,原位模型允许非侵入性的监测癌症进展<em>在体内</em>生物发光成像。

Abstract

<p class="jove_content">胰腺癌有一个非常可怜的5年生存率为4-6%。我们亟需新的治疗选择,依赖于改善胰腺癌生物学的理解。为了更好地了解癌症细胞具有胰腺微环境的相互作用,我们演示了一种胰脏癌,可以允许非侵入性的监测癌症进展原位模型。荧光素酶标记的胰腺癌细胞悬浮在基底膜,并交付到胰尾在剖腹手术。基底膜在体温下固化,在注射过程中的癌细胞,以防止泄漏。原发肿瘤的生长和转移到远处器官监测荧光素酶底物虫荧光素注射后,用<em>在体内</em>从癌细胞的生物发光发射成像。<em>在体内</em>摄像也可以被用来跟踪原发肿瘤切除后复发。这种原位模型适合于同源和异种移植模型,可用于临床前试验调查新颖的抗癌疗法对主胰腺肿瘤的生长和转移的影响。</p>

Introduction

胰腺癌是癌症相关死亡的第四大原因,与5年生存率为4-6%。1,2只有15%的患者及早诊断疾病获手术,肿瘤复发> 80%,这些患者3,4吉西他滨用于治疗胰腺癌,但是,化疗是常见的药物往往有整体生存影响不大。我们亟需新的药理治疗胰腺癌的策略。他们的发展依赖于了解疾病进展的关键步骤,可能是敏感的干预治疗明显改善。

原位胰腺癌模型模拟人类疾病的关键环节,使他们的理想工具研究胰腺癌的生物学6-9相反在体外细胞检测胰腺癌细胞的行为。ð胰腺癌的体内模型,皮下原位模型允许调查肿瘤细胞胰腺微环境的相互作用。病情恶化的动力学在原位模型和高度重复性发生在很短的时间框架(周),这使得它们非常适合新型疗法的临床前试验。这是在发病发生在一个时间更长,更可变帧(个月至1年)10当用更积极的细胞株转基因模型,原位胰腺癌模型看到那些类似自发转移模式患者如萤火虫荧光素酶的生物发光报告基因的表达,有利于纵向监测肿瘤的生长,转移传播,复发和响应疗法6,11

在这里,我们描述了胰腺癌原位模型,利用MATR埃吉尔局部细胞传递, 在体内生物发光成像的非侵入性的监测肿瘤进展。胰腺癌原位模型允许非侵入性的疾病进展和治疗干预在同基因或异种移植模型分析。

Protocol

该协议被证明是作者的机构的动物护理和使用委员会的指导和批准下进行。所有的实验都符合所有有关准则,法规和监管机构执行。 1。转导胰腺癌细胞株混合厚膜胰腺癌细胞表达荧光素酶的如前面所述。12,13 PANC-1和胰腺癌-1胰腺癌细胞株转导的萤火虫荧光素酶,是用在这里。 注:也可用于海肾荧光素或细菌荧光素酶。 <…

Representative Results

这种方法介绍胰腺癌原位模型,采用外科手术,包括诱导麻醉,剖腹探查术,注射癌细胞在基底膜和腹部闭合( 图1A)。注入的细胞形成一个气泡在胰腺的表面( 图1B)。胰腺癌恶化可能非侵入性监测使用在体内生物发光成像跟踪癌细胞扩散和传播( 图2)。肝转移手术切除过程中,通过观察在肝脏中的生物发光显示( 图2)和组织学( <st…

Discussion

在这里,我们描述了一个原位模型胰腺肿瘤发生和发展的纵向评估。原发肿瘤生长动力学重现性( 图3),并且可以非侵入性地使用生物发光成像的荧光素酶标记的细胞, 肿瘤反应的新型抗胰腺癌的治疗学的分析监测。该模型与人类疾病相一致,显示本地侵犯胰腺( 图4A),允许调查肿瘤细胞的胰腺微环境的相互作用。荧光素酶标记的细胞株中允许使用频率,地…

Disclosures

The authors have nothing to disclose.

Acknowledgements

支持这项工作是由国家卫生和医学研究理事会,澳大利亚(1008865),澳大利亚研究理事会(LE110100125),美国国家癌症研究所(CA138687,01),埃里卡斯隆支持全国乳腺癌早期职业院士基金会,澳大利亚。支持科里纳金福克斯由从瑞士癌症联盟和HDR莫纳什药学研究所奖学金相交。 ELIANE AN​​GST是支持的由授出从伯尔尼癌症联赛。

Materials

Equipment Company Catalog Number Comments
Clean Bench coat
Heating pad Set to 37 °C
Ivis Lumina ll Bioluminescent imager Caliper Alternative bioluminescent imaging systems include In vivo F PRO (Carestream) and Photon Imager (Biospace Lab)
Dissecting scissors
Iris forceps (serrated)
Needle holder
27 G 0.3 ml insulin syringe Terumo T35525M2913

References

  1. American Cancer Society. . Facts and Figures. , (2013).
  2. Hariharan, D., Saied, A., Kocher, H. M. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 10, 58-62 (2008).
  3. Li, D., Xie, K., Wolff, R., Abbruzzese, J. L. Pancreatic cancer. Lancet. 363, 1049-1057 (2004).
  4. Oettle, H., et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 297, 267-277 (2007).
  5. Andersson, R., et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand. J. Gastroenterol. 44, 782-786 (2009).
  6. Angst, E., et al. Bioluminescence imaging of angiogenesis in a murine orthotopic pancreatic cancer model. Mol. Imaging Biol. 12, 570-575 (2010).
  7. Angst, E., et al. N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Surgery. 149, 614-624 (2011).
  8. Hotz, H. G., et al. An orthotopic nude mouse model for evaluating pathophysiology and therapy of pancreatic cancer. Pancreas. 26, 89-98 (2003).
  9. Partecke, L. I., et al. A syngeneic orthotopic murine model of pancreatic adenocarcinoma in the C57/BL6 mouse using the Panc02 and 6606PDA cell lines. Eur. Surg. Res. 47, 98-107 (2011).
  10. Hingorani, S. R., et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 4, 437-450 (2003).
  11. Sloan, E. K., et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042-7052 (2010).
  12. Wang, X., McManus, M. Lentivirus production. J. Vis. Exp. (32), e1499 (2009).
  13. Morizono, K., et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 11, 346-352 (2005).
  14. Saha, D., et al. In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. J. Vis. Exp. (56), e3175 (2011).
  15. Lim, E., et al. Monitoring tumor metastases and osteolytic lesions with bioluminescence and micro CT imaging. J. Vis. Exp. (52), e2775 (2011).
  16. Burton, J. B., et al. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat Med. 14, 882-888 (2008).
  17. Vezeridis, M. P., Doremus, C. M., Tibbetts, L. M., Tzanakakis, G., Jackson, B. T. Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J. Surg. Oncol. 40, 261-265 (1989).
  18. Fu, X., Guadagni, F., Hoffman, R. M. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl. Acad. Sci. U.S.A. 89, 5645-5649 (1992).
  19. Reyes, G., et al. Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res. 56, 5713-5719 (1996).
  20. Kim, M. P., et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 4, 1670-1680 (2009).
  21. Furukawa, T., Kubota, T., Watanabe, M., Kitajima, M., Hoffman, R. M. A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res. 53, 3070-3072 (1993).
  22. Lewis, C. E., Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605-612 (2006).
  23. Brembeck, F. H., et al. The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 63, 2005-2009 (2003).
check_url/50395?article_type=t

Play Video

Cite This Article
Chai, M. G., Kim-Fuchs, C., Angst, E., Sloan, E. K. Bioluminescent Orthotopic Model of Pancreatic Cancer Progression. J. Vis. Exp. (76), e50395, doi:10.3791/50395 (2013).

View Video