Summary

Улучшение Шанс белка кристаллизации случайным Microseed Matrix скрининга

Published: August 31, 2013
doi:

Summary

Здесь мы опишем общий метод случайной microseed матрицы скрининга. Этот метод показан значительно увеличить шансы на успех белковых кристаллизации скрининга экспериментов, снизить потребность в оптимизации, а также обеспечить надежную поставку кристаллов для сбора данных и лиганд-купания экспериментов.

Abstract

Случайное скрининг microseed матрица (РММС) представляет собой метод кристаллизации белка, в котором затравочные кристаллы добавлен в случайных экранов. Увеличивая вероятность того, что кристаллы будут расти в метастабильной зоны фазовой диаграммы белка, дополнительные провода кристаллизации часто получают, качество кристаллов, произведенных может быть увеличена, и хороший запас кристаллов для сбора данных и купания экспериментов обеспечивается. Здесь мы опишем общий метод РММС, которые могут быть применены к либо сидя падение или висит диффузии экспериментов пара падение, установленных вручную или с использованием жидких робототехнику обработки, в 96-колодца или формате 24-а в трее.

Introduction

С момента своего первоначального заявления Перутца, Кендрю с сотрудниками в определении структуры гемоглобина и миоглобина, к современным высокой пропускной автоматизированных трубопроводов структурной геномики консорциумов, макромолекулярный рентгеновской кристаллографии предоставил нам беспрецедентную структурную заглянуть в мире белка . Этот метод остается наиболее широко применяется экспериментальный метод, который позволяет прямой визуализации структуры белка в атомной, или около атомным разрешением (т.е. в диапазоне 1-3 Å). Предпосылкой для рентгеновской дифракции, которая будет применяться к белку в том, что оно должно быть сначала кристаллизуется, и именно это этап процесса, который остается самым крупным ограничение скорости шаг в определении структуры дифракционными методами 1, 2. Несмотря на значительные успехи в понимании процесса кристаллизации белков, и значительные улучшения в качестве и доступности экранов кристаллизации,лотки, и связанные с ними технологии, остается невозможным достоверно предсказать вероятность успеха кристаллизации 3. Биохимические и биофизические методы могут быть применены для оценки того белок процентных дисплеев благоприятные характеристики для зарождения кристаллов и роста, то есть это хорошо сложенный, однородная, монодисперсными и т.д., однако, эти знания ни в коей мере обеспечить окончательный предиктором кристаллизации склонность.

Посев уже давно якобы быть жизнеспособным способ улучшения количество, размер и качество существующих кристаллов или кристаллического материала 4-7. Этот подход основан на том, что состояние, которое поддерживает зарождения кристаллов не может быть оптимальным для последующего роста кристаллов и наоборот. Передавая ядросодержащие материал из одного состояния в другое, можно попытаться эффективно отделить эти процессы, тем самым, предоставляя доступ к новым, еще неизведанные пространства кристаллизации,и в результате увеличения общего показателя успешности скрининга эксперимента. Штатные методы были зарегистрированы для (I) macroseeding, передача монокристалла во всей его полноте из одного состояния в другое 8, (II) полоска посева, передача зародышевого материала, как правило, полученной путем применения направленного давления с использованием, например усов у кошки на поверхность существующей кристалла, а затем последующего прохождения минимальным через новый падения кристаллизации 9, и (III) "классической" microseeding, передача Кристалл "семян", порожденных уборки раздавил кристаллы (или кристаллический материал), в условиях, сходных с теми, которые дали семенам 10. Примечательно все три из этих методов требуют много времени и плохо масштабируемым, конечно по сравнению с тем, что это достижимо с современными робототехники кристаллизации обработки жидкостей. Эти факторы способствовали, в какой-то степени, по крайней мере, в восприятии, что семяIng является методом для посещения только тогда, когда другие подходы не смогли приносить свои плоды.

Случайная матрица microseeding (РММС) Недавнее методологическая инновация, которая сочетает в себе преимущества традиционного microseeding с тех скрининга высокой пропускной и масштабируемости 11-13. Этот подход основан на генерации семенного материала, полученного из зародышевого кристаллического материала, который может быть аликвоты в / на каждой sub-well/coverslip в пределах стандартного экрана кристаллизации 96-условию. Этот метод применим к обоим сидя или висит пара падение диффузии эксперименты, установленные вручную или с использованием жидких робототехнику обработки, в 24-колодца или 96-луночного формата трее. РММС было продемонстрировано экспериментально значительно увеличить показатель успеха кристаллизации, и производят кристаллы повышения качества дифракции и количества 11, 13, 14, и представляет собой инновационный инструмент в арсенале кристаллографы "подходов в оNgoing усилия на пути к успеху кристаллизации. Здесь мы опишем общий метод РММС и обеспечить образцы данных, иллюстрирующих эффективность этого метода.

Protocol

1. Стратегические соображения Выбор семенных кристаллов используется для microseeding экспериментов будет варьироваться в зависимости от целей эксперимента. В начале проекта было бы полезно, чтобы найти несколько хитов кристаллизации, которые могут обеспечить альтернативные отправ?…

Representative Results

(А) Пример эксперимента РММС Чтобы продемонстрировать эффективность РММС скрининга мы применили этот метод для кристаллизации куриного яйца лизоцима (HEWL) и печени крупного рогатого скота каталазы (BLC). Оба эти ферменты в высшей кристаллизоваться и структурно охарактериз?…

Discussion

В этой статье мы описали общий метод РММС белка скрининга кристаллизации. Мы показали, используя два тестовых белков значительно усилены в успешности кристаллизации с помощью этого метода. Анализ дифракции с использованием синхротронного излучения подмножества кристаллов, полученн?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа финансировалась частично BBSRC (BB/1006478/1). ПРР является получателем исследовательский грант Королевское общество университета.

Materials

Name of Reagent/Material Company Catalog Number Comments
MRC 96 well crystallization trays Molecular Dimensions Ltd MD11-00-100 Non-UV compatible, for screens established by robot
ClearView sealing sheets Molecular Dimensions Ltd MD6-01S
Hen egg white lyzozyme Sigma-Aldrich L6876 ~95% purity
Bovine liver catylase Sigma-Aldrich C9322 >95% purity
Xylanase Hampton Research HR7-104
Thaumatin from Thaumatococcus daniellii Sigma-Aldrich T7630
Thermolysin from Bacillus thermoproteolyticus rokko Sigma-Aldrich P1512
JCSG-plus HT-96 screen Molecular Dimensions Ltd MD1-40 For screens established by robot
PACT premier HT-96 screen Molecular Dimensions Ltd MD1-36 For screens established by robot
Morpheus HT-96 screen Molecular Dimensions Ltd MD1-47 For screens established by robot
Crystal Phoenix liquid handling system Art Robbins Instruments 602-0001-10
Seed bead kit Hampton Research HR2-320
Binocular stereo microscope Leica M165C
Scalpel blades Sigma-Aldrich S2646-100EA
ErgoOne 0.1-2.5 μl pipette Starlab S7100-0125
ErgoOne 2-20 μl pipette Starlab S7100-0221
ErgoOne 100-1000 μl pipette Starlab S7100-1000
JCSG-plus screen Molecular Dimensions Ltd MD1-37 For screens established by hand
PACT premier screen Molecular Dimensions Ltd MD1-29 For screens established by hand
Morpheus screen Molecular Dimensions Ltd MD1-46 For screens established by hand
Tweezers Sigma-Aldrich T5415-1EA
CrystalClene coverslips 18 mm Molecular Dimensions Ltd MD4-17
2 ml glass Pasteur pipettes Sigma-Aldrich Z722669
Vortex mixer Fisher Scientific 02-215-360
24 well XRL crystallization tray Molecular Dimensions Limited MD3-11 For screens established by hand
30% (w/v) PEG 8000, 0.2 M ammonium sulfate, 0.1 M sodium cacodylate pH 6.5
20% (w/v) PEG 8000, 0.2 M magnesium acetate, 0.1 M sodium cacodylate pH 6.5
20% (w/v) PEG 6000, 100 mM citric acid pH 5.0

References

  1. Bergfors, T. Protein Crystallization. IUL Biotechnology Series. , (2009).
  2. Rupp, B. . Biomolecular Crystallography: Priciples, Practice and Application to Structural Biology. , (2010).
  3. Babnigg, G., Joachimiak, A. Predicting protein crystallization propensity from protein sequence. J. Struct. Funct. Genomics. 11 (1), 71-80 (2010).
  4. Bergfors, T. Seeds to crystals. J. Struct. Biol. 142 (1), 66-76 (2003).
  5. Ireton, G. C., Stoddard, B. L. Microseed matrix screening to improve crystals of yeast cytosine deaminase. Acta. Crystallogr. D. Biol. Crystallogr. 60, 601-605 (2004).
  6. Zhu, D. Y., Zhu, Y. Q., et al. Optimizing protein crystal growth through dynamic seeding. Acta. Crystallogr. D. Biol. Crystallogr. 61 (Pt 6), 772-775 (2005).
  7. Bergfors, T. Screening and optimization methods for nonautomated crystallization laboratories. Methods Mol. Biol. 363, 131-151 (2007).
  8. Xu, L., Butcher, S. J., et al. Crystallization and preliminary X-ray analysis of receptor-binding protein P2 of bacteriophage PRD1. J. Struct. Biol. 131 (2), 159-1563 (2000).
  9. Rangarajan, E. S., Izard, T. Improving the diffraction of full-length human selenomethionyl metavinculin crystals by streak-seeding. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66 (Pt 12), 1617-1620 (2010).
  10. Kadirvelraj, R., Harris, P., et al. A stepwise optimization of crystals of rhamnogalacturonan lyase from Aspergillus aculeatus. Acta. Crystallogr. D. Biol . Crystallogr. 58 (Pt 8), 1346-1349 (2002).
  11. D’Arcy, A., Villard, F., et al. An automated microseed matrix-screening method for protein crystallization. Acta. Crystallogr. D. Biol. Crystallogr. 63 (Pt 4), 550-554 (2007).
  12. Shaw Stewart, P. D., Kolek, S. A., et al. Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Crystal Growth & Design. 11 (8), 3432-3441 (2011).
  13. Obmolova, G., Malia, T. J., et al. Promoting crystallization of antibody-antigen complexes via microseed matrix screening. Acta. Crystallogr. D. Biol. Crystallogr. 66, 927-933 (2010).
  14. Villasenor, A. G., Wong, A., et al. Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. Acta Crystallogr D Biol Crystallogr. 66 (Pt 5), 568-5676 (2010).
  15. Strynadka, N. C., James, M. N. Lysozyme: a model enzyme in protein crystallography. EXS. 75, 185-222 (1996).
  16. Diaz, A., Loewen, P. C., et al. Thirty years of heme catalases structural biology. Arch. Biochem. 525 (2), 102-110 (2012).
check_url/50548?article_type=t

Play Video

Cite This Article
Till, M., Robson, A., Byrne, M. J., Nair, A. V., Kolek, S. A., Shaw Stewart, P. D., Race, P. R. Improving the Success Rate of Protein Crystallization by Random Microseed Matrix Screening. J. Vis. Exp. (78), e50548, doi:10.3791/50548 (2013).

View Video