Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Behavior

統合失調症のための家族ハイリスク児の感情オドボール課題を用いて前頭辺縁系の活性の測定

Published: December 2, 2015 doi: 10.3791/51484

Protocol

チャペルヒル - この試験中に使用される研究技術は、デューク大学とノースカロライナ大学の機関審査委員会(IRB)により承認されました。

1.イメージングタスクデザイン

  1. より頻度の標準刺激(スクランブル画像)のシーケンス内のまれなターゲット刺激を提示し、イベントベースの行動のタスク(円)を生成します。タスクの概略1に示されている。CIGALソフトウェア10を使用してタスクを提示します。

図1
タスク設計の図1の回路図は、この図は、許可を得て、ハート 20から変更されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。

  1. 選択嫌悪刺激のらと国際情動写真システムデータベース(IAPS)から中性刺激のセット。 IAPS画像は覚醒と価11のレベルを反映させるために1-9のスケールで評価されています。高い数値は、より高い正の価数と覚醒を示します。そのようなヘビ、クモ、または他の動物の絵のように年齢に応じた研究グループにある画像のセットを選択します。
    注意:この研究のために使用されるタスク無関係な嫌悪刺激画像は3.38(SD = 1.78)および6.14(SD = 2.08)の平均覚醒評価の平均価数の評価を持っていました。中性刺激画像は6.21(SD = 0.26)および3.72(SD = 2.15)の平均覚醒評価の平均価数を持っていました。
  2. 画像は500ミリ秒と1500ミリ秒のための擬似ランダム化された順に表示されるように、プログラムのタスクスクリプトは、刺激間の間隔を意味します。現在の目標刺激とタスク無関係な中立画像なしより頻繁に15秒毎とは、刺激の各約4%を占めています。チ血行動態応答関数の良好な分解能を提供するためにtterイベント開始時間。
  1. 画像の8セット、参加者は全8回の過程で40の目標と40のタスク無関係な中立画像の合計が提示されるように、8の機能の実行ごとに1つを作成します。

2.参加者の設定とスキャン

  1. 精神病のための家族リスクが高い健康な対照個体またはいずれかである9歳と18との間に子供や青年を募​​集。
    1. 健康な個体は全く精神疾患や精神疾患を持つ任意の第一度家族を持っていないことを確認してください。家族のリスク参加者は統合失調症との少なくとも1つの第1度近親者(親や兄弟を)持っていることを確認してください。第一度近親における他の精神疾患の存在のためにそれらを除外しないでください。
    2. 家族リスクグループの参加者との年齢と性別が一致する健康参加秒。
  2. 未成年者のために18歳以上の参加者からインフォームドコンセントを取得し、親/法定保護者からインフォームドコンセントを取得してください。さらに、この研究に参加している未成年者からの書面による同意を取得します。
  3. 環境でそれらを理解するために、モックMRIスキャナの参加者を配置します。スキャナノイズの録音を再生し、彼らがタスクの手順を理解していることを確実にするために行動タスクの練習走行を完了しています。
  4. MRIスキャナの参加者を配置し、必要な脳のローカリゼーションスキャンおよび/または解剖学的画像を取得します。
  5. MRIセーフ入力ボックスを使用して、すべてのターゲット刺激とすべての他の刺激のための彼らの中指と別のボタンに応じて、その人差し指で1ボタンを押して、参加者に伝えます。
  6. fMRIのスキャンに続いて、参加者のサブセットからの研究に使用されている画像のための覚醒と価電子の主観的な評価を集めます。カレントンの研究では、15コントロールと家族リスクの高い13から評価を得ました。

3.画像取得

  1. 3.0テスラのMRIスキャナに参加者を配置します。 TE; 5.16ミリ秒:2.04ミリ秒; FOV:まず、(TRスポイル勾配リコール取得パルスシーケンスを使用して、解剖学的T1コントラスト画像に同一平面上に3Dを含む構造画像のセット取得24センチメートルを、画像マトリクス:256×256を、フリップ角度:20;ボクセルサイズ:1.9ミリメートル×0.94ミリメートル×0.94ミリメートル; 68の軸方向のスライス)。
  2. フル脳のカバレッジと傾斜エコーエコープラナーイメージングシーケンスを使用して、機能画像データを取得し(TR:2000ミリ秒、TE:27ミリ秒; FOV:24センチメートル;画像マトリクス:64×64;フリップ角:60;ボクセルサイズ:3.75脳活動は、行動のタスクの実行中に測定することができるように34の軸方向スライス); MMは3.8ミリメートル×3.75ミリメートル×。行動のタスクを実行するたびにこの撮影シーケンスを実行します。各ランは120撮影時間点で構成する必要があります。
  3. TAを提示SKは8機能の実行で、それぞれが約4分を持続します。

4.分析

  1. 画像前処理:FSL 12で開くfMRIのエキスパート解析ツール(FEAT)。第1レベルの分析と事前統計を選択します。
    1. データ」タブで、入力画像の数を選択し、処理しようとしているMR画像のそれぞれへのパスを入力します。出力ディレクトリを設定します。 トータルボリューム、廃棄された買収の数、およびTRを入力してください。
    2. 「前の統計情報 」タブで、5 MMSにFWHMを平滑MCFLIRT、空間に動き補正を設定し、 そして、「スライスタイミング補正」。「ベット脳抽出」と「 ハイパス 」時間フィルタリングを選択しますが、B0のunwarpingを選択しない(あなたは傾斜磁場マップを持っているuness)または「私はnormaizationをntensitiy」。12,14。
    3. 「登録」タブで、「メインSTRUを選択ctural画像」。。被験者の頭蓋骨ストリッピングT1強調画像へのパスを入力し、少なくとも6自由度で線形通常の検索を使用します。 標準領域のチェックボックスをオンにします。MNIアトラスイメージへのパスを入力します。通常の線形を使用12 DOF。押し移動して検索します。
    4. X、Y、またはZ方向に3mmより大きいヘッドの動きに参加者を除外する。
  2. レベル1:単一のランに作業条件との間でデータを比較してください。オープンFEAT。 「第1レベルの分析」と「統計+ポスト統計」を選択します。
    1. [データ]タブで 、入力の数を設定し、MR画像のそれぞれへのパスを入力します。 。「出力ディレクトリ」のパスを入力して「トータルボリューム」、廃棄された買収の数、およびTRを入力してください。
    2. 統計 」タブで、「使用フィルムはプリホワイトニング 」のチェックボックス16を選択します。 フルモデルSEを押しますTUP」ボタンを押します。タスク条件の数に「 元の電気自動車の数」に設定します。各条件について、 コンボリューション 」ドロップダウン・メニュー17,18」からダブルガマHRF「基本形状]ドロップダウンメニューから「 カスタム(3列形式)」を選択し、タスクのタイミングを含むテキストファイルを選択します。
      1. 指定されたタイプの各「イベント」ごとに1つのエントリを持つ3列に、このテキストフ​​ァイルをフォーマットします。最初の列は、第二の時間(秒単位)が含まれている必要があり(秒)開始時間が含まれている必要があり、3番目は、イベントの重みを含める必要があります。 コントラスト&F検定]タブで 、各比較のために、各タスクの状態と1のための1つのコントラストを作成します。
    3. 「ポスト・統計」タブで、「しきい」ドロップダウン・メニュー 「クラスタ」を選択、「Zしきい値」とクラスタP Tを設定それぞれ2.3および0.05 8,19にhreshold。
    4. 「登録」タブで、「メイン構造画像」を選択します。被験者の頭蓋骨ストリッピングT1強調画像へのパスを入力します。少なくとも6自由度で線形通常の検索を使用します。 「標準容量」チェックボックスを選択します。 MNIアトラスイメージへのパスを入力します。 12自由度ノーマル、線形検索を使用します。押し、「移動」。
  3. レベル2:各タスク条件の実行間のデータを比較してください。オープンFEAT。ドロップダウンメニューから「より高いレベルの分析」と「統計+ポスト統計」を選択します。
    1. [データ]タブで、「入力が低レベルのFEATのディレクトリです 」を選択します。入力数を設定し、MR画像のそれぞれへのパスを入力します。 「出力ディレクトリ」のパスを入力します。
    2. 選択ボックス"Eを修正するには:「統計」タブで、「FLAME1は混合効果」に変更ffects「押し」モデルセットアップウィザード単一のグループの平均を"ボタンを押します。選択」」をクリックして「プロセス」ボタンをクリックします。
    3. 「ポスト・統計 」タブで、「しきい 」ドロップダウン・メニュー 「クラスタ」を選択し、8,19はそれぞれ2.3と0.05に「Zしきい値 クラスタP」のしきい値を設定します。押し、「移動」。
  4. レベル3:すべての実行間で、各タスクの状態のための科目間のデータを比較してください。オープンFEAT。ドロップダウンメニューからより高いレベルの分析 」と「 統計+ポスト統計」を選択します。
    1. [データ]タブで、[入力の数を設定し、MR画像のそれぞれへのパスを入力し、「 入力がFEATディレクトリから画像を対応させていただきます。3Dです 」。 「出力ディレクトリ 」のパスを入力します。
    2. 「統計」T ONAB、押して「フルモデルのセットアップ」。各EVのために - このような診断等のグループ、年齢、性別、各被験者の値(入力■入力1)を入力し、グループ変数と共変量の数に等しい電気自動車の数を設定します。あなたはこれらの値のスプレッドシートをコピーするために「貼り付け」ウィンドウを使用することができます。
      1. 「コントラスト&F検定 」タブで、各テスト変数と各コントラスト( 例えば、診断グループ)のコントラストを追加します。各試験変数については、該当するEVの下欄に値1を選択することにより、コントラストを設定します。各コントラストのために、1〜-1の第1の値と第2のセット。 「完了」を選択します。
    3. 「ポスト・統計 」タブで、「しきい」ドロップダウン・メニュー 「クラスタ」を選択し、2.3と0.05に「Zしきい値 「クラスタP」のしきい値を設定し、それぞれ8,19 、「移動」。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

人口統計学的特性20に基づいてグループ間の差は認められませんでした。行動データは、ターゲット検出タスクは9-18歳の小児および青年のための難しさの適切なレベルであることを示しました。現在の研究では、正しくターゲット(SD = 0.14)の82.36パーセントを同定し、および家族のリスクグループは、正しくターゲット(SD = 0.17)の76.8パーセントを同定し制御します。両グループは、中性の写真に比べて感情的な絵を識別する際の精度を低下が示された(F(1,40)= 5.63、P = 0.03)。

撮像データは、実験条件は幹部と感情的処理中に動員されることが予想領域において有意な活性化を導いたことを示しました。活性化は、目標試験中、右扁桃体、二国間の眼窩前頭皮質、紡錘状皮質と視覚CORで前頭前野、前部尾状、島、および後部頭頂領域に見られました両群ともに嫌悪試験中ticalエリア。表1は、各条件のコントロールに有意な活性化の領域を示しています。

このパラダイムはまた、コントロールと統合失調症の家族リスクが高い個人間の活性化に有意な差を誘発しました。家族ハイリスクグループは、刺激をターゲットに応じて前頭線条回路内の活性化を減少を示しました。コントロールは、対照的に、中前頭回と島でより活性化を示しました。条件間の群差は、表2及び図2に示されている家族性高リスク群は、標的に応答してコントロールと嫌悪刺激( 図3)と比較して、年齢に関連した活性化の異なるパターンを示しました。

図2
群間差の2アクティベーションマップ図。(A)家族性高リスク群(n = 21)は、ターゲット処理中に制御した(n = 21)よりも大きな活性化を示した領域は。 CAUD =尾状。 IFG =下前頭回。 ITG =下側頭回。コントロールは、ターゲットの処理中に家族性高リスク群よりも高い活性化を示した(B)の分野。 INS =島。 MFG =ミドル前頭回。 MTGは=中側頭回。 (C) 家族ハイリスクグループは嫌悪>ニュートラルコントラストの間にコントロールよりももっと活性化領域。 COC =中央ふたの皮質。コントロールは嫌悪>ニュートラルコントラストの間に家族ハイリスク群よりも活性化(D)分野。 ACC =前帯状皮質; PC =楔前部。この図は、ハートらから変更されている。20、許可を得て。 このFの拡大版を表示するには、こちらをクリックしてくださいigure。

図3
図3.加齢群差の活性化マップ。ターゲット処理中に対照よりも家族高リスク群では年齢とともに大きく正の相関を持つ(A)エリア。 ACC =前帯状皮質; INS =島。 OFC =眼窩前頭皮質; TH =視床。嫌悪>ニュートラルコントラスト時の家族高リスク群よりも対照の加齢に伴う大きな正の相関を持つ(B)エリア。 IFG =下前頭回。 PostCG =中心後回。 PreCG =中心前回。この図は、許可を得て、ハートら20から変更されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。

<TBODY> <TD> B
ST1。群内の活性化巣のコントロールで(N = 21)
MNI座標
領域半球 X Y Z 最大Z値最大p値1
活性化した(p <0.05、偽発見率補正された)を標的
ミドル前頭回/前頭極 B -30 -2 50 5.57 <0.0000001
下前頭回 B 46 12 32 5.41 <0.0000001
B -32 24 0 5.4 <0.0000001
中心前回 B -40 -22 48 5.53 <0.0000001
視床 B -12 -16 12 5.03 <0.0000001
尾状 B -12 12 4 4.07 0.000003
被殻 B 18 8 2 4.27 0.00009
前帯状/ Paracingulate状回 B 0 12 46 5.6 <0.0000001
後部帯状回 B 8 -16 28 5.2 <0.0000001
スーペリア/中側頭回 48 -46 10 5.88 <0.0000001
紡錘/下側頭回 B -30 -50 -12 5.64 <0.0000001
上頭頂小葉/縁上回/中心後回 B 30 -44 44 6 <0.0000001
横後頭部皮質 B 48 -62 12 6.12 <0.0000001
嫌悪>中性活性化(p <0.05、補正後の偽発見率)
下前頭回 L -44 14 14 3.16 0.0004
前頭極/内側前頭皮質 B -2 64 0 3.42 0.0005
中心後回 L -62 -22 34 3.12 0.0004
前帯状皮質 B -4 34 8 3.27 0.0002
後部帯状回 B 0 -44 28 3.26 0.0002
下側頭葉/紡錘状回 B -44 -44 -14 3.03 0.0006
角回 B 46 -64 8 3.42 0.0001
縁上回 L -40 -56 20 3.59 0.00005
嫌悪活性化(p <0.05、補正後の偽発見率)
扁桃体 R 22 -4 -18 2.86 0.001
眼窩前頭皮質/島 B 36 22 -4 4.93 <0.0000001
ミドル前頭回 B 32 4 40 4.7 <0.0000001
前頭極 B -38 36 10 4.95 <0.0000001
前帯状/paracingulate状回 B 6 16 50 4.85 <0.0000001
後部帯状回 B 2 -28 24 5.88 <0.0000001
視床 B 18 -26 2 5.44 <0.0000001
中心前回 B -44 8 34 4.54 <0.0000001
上頭頂小葉 B -20 -56 54 6.05 <0.0000001
横後頭部皮質 B -36 -82 4 6.05 <0.0000001
後頭極 B -16 -90 18 5.18 <0.0000001
B、​​二国間
1報告p値は、FDR-補正値<0.05で有意で、補正していません

コントロール(N = 21)で群内の活性化巣表1は、このテーブルは、許可を得て、ハートら20から変更されています。

表2群間のアクティベーションの違い
MNI座標半球 X Y Z 最大Z値最大p値1
ターゲット
家族性リスク>コントロール(P <0.05、偽発見率補正しました)
前頭極 B 16 76 6 3.52 0.00007
下前頭回 L -58 16 18 3.37 0.0001
尾状 B -14 20 10 3.2 0.0003
下側頭回 L -52 -44 -20 2.94 0.0009
コントロール>家族高リスク(P <0.05、偽発見率を修正)
ミドル前頭回/中心前回 R 48 8 34 3 0.0007
前頭蓋皮質 L -46 16 -4 2.94 0.0009
補足運動野 R 18 -16 40 3.02 0.0007
L -34 -18 4 2.94 0.0009
中心前回 B 10 -26 60 3.29 0.0002
中心後回 B 14 -38 54 3.57 0.0001
上側頭回 R 54 -6 -4 3.18 0.0003
中側頭回 R 48 -46 8 3.65 0.00004
楔前部 R 2 -40 46 2.89 0.001
横後頭部皮質 B -20 -74 36 3.36 0.0002
嫌悪 - ニュートラル
Centralふたの皮質 R 50 -2 6 3.01 0.0007
コントロール>家族高リスク(P <0.05、偽発見率を修正)
前帯状皮質 L -6 38 8 2.68 0.002
楔前部 L -10 -54 36 2.7 0.002
B、​​二国間
1報告p値は、FDR-補正値<0.05で有意で、補正していません

表2は、群間の活性化病巣の違い。このテーブルには、許可を得て、ハートら20から変更されています。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
3T MRI scanner GE BIAC 3T scanner (replaced)

DOWNLOAD MATERIALS LIST

References

  1. Kety, S. S., Rosenthal, D., Wender, P. H., Schulsinger, F. Mental illness in the biological and adoptive families of adpoted schizophrenics. Am J Psyc. 128, 302-306 (1971).
  2. Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychia. 44, 660-669 (1987).
  3. Nuechterlein, K. H., Dawson, M. E. Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bul. 10, 160-203 (1984).
  4. Nuechterlein, K. H. The vulnerability/stress model of schizophrenic relapse: a longitudinal study. Acta Psychiatr Scand, Supp. 382, 58-64 Forthcoming.
  5. Keshavan, M. S. Premorbid cognitive deficits in young relatives of schizophrenia patients. Front Hum Neurosc. 3 (62), (2010).
  6. Kiehl, K. A., Liddle, P. F. An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophr Re. 48, 159-171 (2001).
  7. Bramon, E. Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. Neuroimag. 27, 960-968 (2005).
  8. Dichter, G. S., Bellion, C., Casp, M., Belger, A. Impaired modulation of attention and emotion in schizophrenia. Schizophr Bul. 36, 595-606 (2010).
  9. Fichtenholtz, H. M. Emotion-attention network interactions during a visual oddball task. Brain Res Cogn Brain Re. 20, 67-80 (2004).
  10. Voyvodic, J. T. Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. Neuroimag. 10, 91-106 (1999).
  11. International affective picture system (IAPS): Digitized photographs, instruction manual and affective ratings. Technical Report A-6. , The Center for Research in Psychophysiology, University of Florida. (2005).
  12. Smith, S. M. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimag. 23, 208-219 (2004).
  13. Smith, S. M. Fast robust automated brain extraction. Hum Brain Map. 17, 143-155 (2002).
  14. Jenkinson, M., Bannister, P., Brady, M., Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimag. 17, 825-841 (2002).
  15. Jenkinson, M., Smith, S. A global optimisation method for robust affine registration of brain images. Med Image Ana. 5, 143-156 (2001).
  16. Woolrich, M. W., Ripley, B. D., Brady, M., Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimag. 14, 1370-1386 (2001).
  17. Beckmann, C. F., Jenkinson, M., Smith, S. M. General multilevel linear modeling for group analysis in FMRI. Neuroimag. 20, 1052-1063 (2003).
  18. Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., Smith, S. M. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimag. 21, 1732-1747 (2004).
  19. Genovese, C. R., Lazar, N. A., Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimag. 15, 870-878 (2002).
  20. Hart, S. J. Altered fronto-limbic activity in children and adolescents with familial high risk for schizophrenia. Psychiatry Re. 212, 19-27 (2013).
  21. Hariri, A. R., Bookheimer, S. Y., Mazziotta, J. C. Modulating emotional responses: effects of a neocortical network on the limbic system. Neurorepor. 11, 43-48 (2000).
  22. Gottesman, I. I., Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psyc. 160, 636-645 (2003).
  23. Glahn, D. C., Thompson, P. M., Blangero, J. Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Map. 28, 488-501 (2007).

Tags

行動、問題106、思春期、選択的注意、感情、前頭前野、機能的MRI、統合失調症
統合失調症のための家族ハイリスク児の感情オドボール課題を用いて前頭辺縁系の活性の測定
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hart, S. J., Shaffer, J. J.,More

Hart, S. J., Shaffer, J. J., Bizzell, J., Weber, M., McMahon, M. A., Gu, H., Perkins, D. O., Belger, A. Measurement of Fronto-limbic Activity Using an Emotional Oddball Task in Children with Familial High Risk for Schizophrenia. J. Vis. Exp. (106), e51484, doi:10.3791/51484 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter