Summary

双光子<em>在体内</em>树突棘中的鼠标皮质用稀疏的头颅成像准备

Published: May 12, 2014
doi:

Summary

Time-lapse imaging in the living animal provides valuable information on structural reorganization in the intact brain. Here, we introduce a thinned-skull preparation that allows transcranial imaging of fluorescently labeled synaptic structures in the living mouse cortex by two-photon microscopy.

Abstract

在哺乳动物大脑皮层,神经元形态极为复杂的网络,并在突触交换信息。改变突触强度,以及突触的添加/删除,发生在经验依赖性方式,提供了神经元可塑性的结构基础。如在皮层中最兴奋性突触的突触后的部件,树突棘被认为是突触的一个良好指标。小鼠遗传学和荧光标记技术,单个神经元和突触的结构,以优势可以在标签完整的大脑。在这里,我们使用双光子激光扫描显微术跟随荧光标记的突触后树突棘随着时间在体内引入颅成像协议。这个协议利用一个稀疏颅骨制备,这使颅骨完好,并避免所引起的脑膜的曝光和皮质抗炎作用。因此,图像可立即苏收购后rgery被执行。的实验步骤可重复进行以上不同的时间间隔范围从小时到数年。此制剂中的应用也可以被扩展以调查不同的皮层区域,层,以及其它类型的细胞,生理和病理条件下。

Introduction

哺乳动物的大脑皮层参与了许多脑功能,从感官知觉和运动控制,以抽象的信息处理和认知。各种皮质的功能建立在不同的神经回路,不同类型的神经元沟通和个别突触交换信息这是由。突触的结构和功能都一致地被修改以响应经验和病状。在成熟的大脑,突触可塑性需要双方力量的变化和突触的添加/删除的形式,发挥着重要作用的形成和维持功能的神经电路。树突棘是大多数哺乳动物大脑兴奋性突触的突触后成分。不断更替和棘形态变化被认为是作为在突触连接1-7修改一个很好的指标。

双光子激光扫描显微SCOPY透过厚厚的,不透明的准备和光毒性低,这使得它适合用在完整的大脑8实时成像提供深层渗透。与荧光标记的组合,双光子成像提供了一个强大的工具,不期而遇的活体脑并按照在具有高时空分辨率的单个突触的结构重组。各种方法已被用来制备老鼠实时成像9-13。在这里,我们描述了一个稀疏的头颅制剂在体内双光子成像研究在小鼠大脑皮层突触后树突棘的结构可塑性。使用这种方法,我们最近的研究已经描绘的树突棘变化动态画面响应于运动技能学习用的转基因动物与荧光标记的神经元亚群的体内标记技术的快速发展提高可用性,此处描述的类似的程序也可应用于到investiga德其他细胞类型和皮层区域,并结合其它操作,以及在疾病模型中使用16-23。

Protocol

审批需要从家里机构开展的手术和影像学前须获得。在这个手稿中描述的实验是按照从加州大学,圣克鲁斯机构动物护理和使用委员会的准则和法规的规定执行。 1,手术高压灭菌所有手术器械和手术前彻底用70%的酒精消毒的工作区。 通过腹膜内(IP)注射的KX麻醉剂溶液(200毫克/千克氯胺酮和20毫克/公斤赛拉嗪)麻醉小鼠根据鼠标的体重注:KX剂量可以…

Representative Results

在YFP-H线的小鼠25,黄色荧光蛋白表达在V层锥体神经元,其突出的顶端树突在皮质的表面层的一个子集。透过稀疏的头颅准备,荧光标记树突段可重复双光子显微镜下成像在不同成像时间间隔,从小时到几个月。这里,我们表明在1个月大的小鼠,其中个别棘以及丝状伪足可以沿着枝晶可清晰显示运动皮层8天以上相同的树突四时间摄像的一个例子。通常,图像堆栈的深度是从软脑膜表面约1…

Discussion

要获得成功变薄,颅准备,在这个协议的几个步骤是至关重​​要的。 1)颅骨的厚度。颅骨具有夹层结构,具有高密度的致密骨2层和低密度海绵骨的中间层。而高速微型钻孔机是适用于除去密质骨和松质骨的外层,显微叶片是理想的减薄致密骨的内层。由于在开发过程中的头骨的厚度增加和刚度,成年小鼠成像需要多个骨,以便获得质量良好的图像被删除。变薄的区域呈现出透明固体的外观,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢詹姆斯·翡翠的图示。这项工作得到了补助金从精神健康国家学院YZ支持

Materials

Ketamine Bioniche Pharma 67457-034-10 Mixed with xylazine for anesthesia
Xylazine Lloyd laboratories 139-236 Mixed with ketamine for anesthesia
Saline Hospira 0409-7983-09 0.9% NaCl for injection and imaging
Razor blades Electron microscopy sciences 72000 Double-edge stainless steel razor blades
Alcohol pads Fisher Scientific 06-669-62 Sterile alcohol prep pads
Eye ointment Henry Schein 102-9470 Petrolatum ophthalmic ointment sterile ocular lubricant
High-speed micro drill Fine Science Tools 18000-17 The high-speed micro drill is suitable for thinning the outer layer of compact bone and targeting a small area
Micro drill steel burrs Fine Science Tools 19007-14 1.4 mm diameter
Microsurgical blade Surgistar 6961 The microsurgical blade is suitable for thinning the inner layer of compact bone and middler layer of spongy bone
Cyanoacrylate glue Fisher Scientific NC9062131 Fix the head plate onto the skull
Suture Havard Apparatus 510461 Non-absorbale, sterile silk suture, 6-0 monofilament
Dissecting microscope Olympus SZ61
CCD camera Infinity
Two-photon microscope Prairie Technologies Ultima IV
10X objective Olympus NA 0.30, air
60X objective Olympus NA 1.1, IR permeable, water immersion
Ti-sapphire laser Spectra-Physics Mai Tai HP

References

  1. Holtmaat, A., Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature reviews. Neuroscience. 10, 647-658 (2009).
  2. Fu, M., Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends in neurosciences. 34, 177-187 (2011).
  3. Yu, X., Zuo, Y. Spine plasticity in the motor cortex. Current opinion in neurobiology. 21, 169-174 (2011).
  4. Harms, K. J., Dunaevsky, A. Dendritic spine plasticity: looking beyond development. Brain research. 1184, 65-71 (2007).
  5. Segal, M. Dendritic spines and long-term plasticity. Nature reviews. Neuroscience. 6, 277-284 (2005).
  6. Tada, T., Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Current opinion in neurobiology. 16, 95-101 (2006).
  7. Alvarez, V. A., Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annual review of neuroscience. 30, 79-97 (2007).
  8. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  9. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J., Gan, W. B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature protocols. 5, 201-208 (2010).
  10. Holtmaat, A., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature protocols. 4, 1128-1144 (2009).
  11. Drew, P. J., et al. Chronic optical access through a polished and reinforced thinned skull. Nature methods. 7, 981-984 (2010).
  12. Szu, J. I., et al. Thinned-skull cortical window technique for in vivo optical coherence tomography imaging. J Vis Exp. , (2012).
  13. Mostany, R., Portera-Cailliau, C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. , (2008).
  14. Xu, T., et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 462, 915-919 (2009).
  15. Fu, M., Yu, X., Lu, J., Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 483, 92-95 (2012).
  16. Davalos, D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature neuroscience. 8, 752-758 (2005).
  17. Tsai, J., Grutzendler, J., Duff, K., Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature neuroscience. 7, 1181-1183 (2004).
  18. Pan, F., Aldridge, G. M., Greenough, W. T., Gan, W. B. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America. 107, 17768-17773 (2010).
  19. Liu, Z., Condello, C., Schain, A., Harb, R., Grutzendler, J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci. 30, 17091-17101 (2010).
  20. Tremblay, M. E., Zettel, M. L., Ison, J. R., Allen, P. D., Majewska, A. K. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia. 60, 541-558 (2012).
  21. Lam, C. K., Yoo, T., Hiner, B., Liu, Z., Grutzendler, J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature. 465, 478-482 (2010).
  22. Kelly, E. A., Majewska, A. K. Chronic imaging of mouse visual cortex using a thinned-skull preparation. J Vis Exp. , (2010).
  23. Marker, D. F., Tremblay, M. E., Lu, S. M., Majewska, A. K., Gelbard, H. A. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. J Vis Exp. , (2010).
  24. Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 50, 823-839 (2006).
  25. Feng, G., et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  26. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. , (2012).
  27. Zhang, L., et al. Imaging glioma initiation in vivo through a polished and reinforced thin-skull cranial window. J Vis Exp. , (2012).
  28. Pacary, E., et al. Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation. J Vis Exp. , (2012).
  29. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Developmental biology. 240, 237-246 (2001).
  30. Lowery, R. L., Majewska, A. K. Intracranial injection of adeno-associated viral vectors. J Vis Exp. , (2010).
  31. Taniguchi, H., et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 71, 995-1013 (2011).
  32. Zariwala, H. A., et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J Neurosci. 32, 3131-3141 (2012).
  33. Kuhlman, S. J., Huang, Z. J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PloS one. 3, (2008).
check_url/51520?article_type=t

Play Video

Cite This Article
Yu, X., Zuo, Y. Two-Photon in vivo Imaging of Dendritic Spines in the Mouse Cortex Using a Thinned-skull Preparation. J. Vis. Exp. (87), e51520, doi:10.3791/51520 (2014).

View Video