Summary

鼠内镜<em>体内</em>发生和肠道的评价多模式成像伤口愈合和炎症

Published: August 26, 2014
doi:

Summary

小动物成像技术允许串行诊断检查和治疗干预的体内 。近日,应用的范围也显著扩大,目前包括评估结肠肿瘤的发展,促进伤口愈合和监测炎症。该协议说明了鼠内镜这些不同的应用潜力。

Abstract

小鼠模型被广泛用于研究人类疾病的发病机制和临床前评估诊断程序以及治疗干预。然而,病理性改变的有效评估的通常需要的组织学分析,并且当进行离体,就必须在动物的死亡。因此,在传统的实验环境中,个体内随访检查是几乎不可能。因此,在活体小鼠小鼠内窥镜的发展使得研究者首次两者直接可视化的胃肠道粘膜上,也重复监视变更的程序。众多的应用在体内鼠内镜存在,包括研究肠道炎症或创伤愈合,多次获得粘膜活检组织,并在本地管理使用微型喷射导管的诊断或治疗剂。最近,分子影像扩展了诊断成像月dalities允许使用特定photoprobes鲜明的靶分子的特异性检测。总之,鼠内镜检查已经成为一种新型的尖端技术, 活体成像诊断的实验和在各个领域的临床前研究可能显著影响。

Introduction

动物模型,极大地丰富了我们的许多肠道病变的认识。实验室小鼠( 小家鼠 )已成为生物医学研究的主要动物模型,由于其丰富的遗传和基因组信息,并在转基因和基因敲除株一应俱全。除了增进了解疾病的发病机制,动物模型也重要的是用于测试候选药物以及临床诊断或治疗性干预。然而,尽管有各种​​各样的小鼠模型模仿人类疾病,即在病人护理常规使用的许多诊断和介入选项不可用于小鼠。因此,监测策略,以监测小鼠疾病或治疗干预的效果的过程中往往局限于间接观测或验尸分析。虽然非侵入性程序监测小鼠存在活力样疾病活动指数,曲体重减轻或增加,血液,尿液和粪便antification分析,这些只是间接的指标,并通过个体间变异有偏见。此外, 验尸分析防止纵向观察,在重复的时间点。先进的成像技术来监测小鼠最近才推出1,2疾病活动。虽然这些成像技术允许重复的分析,他们只提供对肠道的描述,往往不准确的观点,并不能够直接可视粘膜或允许诊断或治疗干预措施,如活检收购或候选药物的局部和黏膜内的应用程序。

最近,已经开发出高分辨率内镜系统,在活体小鼠使用3,4。首次这些内窥镜技术允许的腔内结肠疾病的病状,如伤口愈合或肠道炎症提供物镜直接可视ective,实时状态,允许在相同的动物在重复的时间点的纵向研究。除了允许重复活检在个体小鼠,内窥镜系统还可以用于通过允许直接应用一种物质到感兴趣的区域,以治疗影响明显的肿瘤或局部炎症。此外,作为治疗和控制物质可以直接递送到感兴趣的区域,这可以在相同的小鼠进行的,不含个体间变异。这些系统现在已经被用于结肠的炎症,伤口愈合,腹腔镜肝脏活组织检查和原位诱导使用各种评分系统肝肿瘤8和肿瘤发展的评估,如结肠炎的严重性(MEICS)5-7的鼠内窥镜索引。 MEICS由五个参数来评估炎:结肠壁的增厚,血管格局的变化,纤维蛋白存在时,mucos粒度人面,大便一致性。

在这个协议中,我们描述了在肠伤口愈合,炎症和结肠癌的小鼠模型中使用刚性内窥镜。首先,我们证明伤口愈合和结肠炎症的内镜评估以及结肠炎活动的纵向评估和致癌的小鼠结肠的研究。除了 ​​描述性的使用鼠内镜,我们提供了使用内视镜仪器的详细说明,以取得活组织切片检查,并关注不同的组件( 例如,候选药物或肿瘤细胞)的局部和黏膜内的应用程序。最后,我们证明了利用小鼠荧光内镜,它采用先进的分子成像技术,在结直肠肿瘤的设置。

Protocol

所有的动物实验批准根据德国动物保护法的Landesamt献给自然色,UMWELT UND Verbraucherschutz(LANUV)。 1材料与实验装置动物保健使用任何应变体重20〜25克雌性或雄性小鼠,并根据当地的动物保护立法容纳他们。 饲料的小鼠与特殊饲料对啮齿动物和应用苜蓿 – 自由饲料至少三天进行荧光检查,以尽量减少腔内自发荧光之前。 蒸压提供饮水自由采食…

Representative Results

在体内监测肠伤口愈合 (; 图1A等于1毫米)在例行胃镜检查,黏膜伤口是由微型活检钳,直径3法国机械诱发。随后,伤口愈合是通过日常的内镜检查监测和残余创面面积使用图像编辑软件, 如测量量化,ImageJ的( 图1B)。个体伤口闭合时间的推移由实际创伤面积/初始伤口面积的商表示。例如,在卷绕代后3天,伤口面积的41%±4.1%…

Discussion

上皮伤口的愈合是一个持续的过程。在胃肠道粘膜内连续生理剥离表层细胞的发生,要求上皮细胞16的频繁再生。因此,伤口愈合不良,对多种疾病产生巨大的影响,包括胃肠道溃疡和17吻合口漏18。可能只能不完全地进行在细胞培养系统中的体外 19,20评价的分子背景,以及潜在的候选药物,刺激上皮的愈合。因此,需要更复杂的实验装置如鼠结肠镜检查以?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢宋佳Dufentester和埃尔克·韦伯的专家技术援助。我们感谢Faekah乔哈尔阿尤校对稿和Stefan布鲁克纳对医疗信息的支持。这项工作是由否则,克朗,费森尤斯-基金会(2012_A94)支持跨学科的资助。 D. Bettenworth是由医学院,WestfälischeWilhelms安大学明斯特的一个研究奖学金支持。 M.布鲁克纳是由德意志研究联合会(DFG SFB1009B8)的“Gerok”旋转位置的支持。 我们感谢海克百隆用于说明鼠标卡通。

Materials

Name Company Catalogue Number Comment
Reagents
Alfalfa-free diet Harlan Laboritories, Madison, USA 2014
Azoxymethane (AOM) Sigma – Aldrich, Deisenhofen, Germany A5486
Bepanthen eye ointment Bayer, Leverkusen, Germany 80469764
Dextran sulphate sodium (DSS) TdB Consulatancy, Uppsala, Sweden DB001
Eosin Sigma – Aldrich, Deisenhofen, Germany E 4382
Ethylenediaminetetraacetic acid (EDTA)                          Sigma – Aldrich, Deisenhofen, Germany E 9884
Falcon Tube 50ml BD Biosciences, Erembodegem, Belgium 352070
Florene 100V/V Abbott, Wiesbaden, Germany B506
Fluorescein-Isothiocyanat (FITC)–dextrane  Sigma – Aldrich, Deisenhofen, Germany FD4-250MG
Haematoxylin                                                     Sigma – Aldrich, Deisenhofen, Germany HHS32-1L
Isopentane (2- Methylbutane) Sigma – Aldrich, Deisenhofen, Germany M32631-1L
Methylene blue Merck, Darmstadt, Germany 1159430025
O.C.T. Tissue Tek compound                                  Sakura, Zoeterwonde, Netherlands 4583
Omnican F – canula Braun, Melsungen, Germany 9161502
Phosphate buffered saline, PBS Lonza, Verviers, Belgium 4629
Sodium Chloride 0,9% Braun, Melsungen, Germany 5/12211095/0411
Standard diet Altromin, Lage, Germany 1320
Tissue-Tek Cryomold Sakura, Leiden, Netherlands 4566
Vitro – Clud                                                                R. Langenbrinck, Teningen, Germany 04-0002 
Equipment
AIDA Control Karl Storz – Endoskope, Tuttlingen, Germany 20 096020
Bandpass filter Semrock, Rochester, USA HC 716/40
Bandpass filter Semrock, Rochester, USA HC 809/81
Biopsy Forceps, 3 Fr., 28cm Karl Storz – Endoskope, Tuttlingen, Germany 61071ZJ
Dell Monitor Dell, Frankfurt am Main, Germany U2412Mb
Examination Sheath, 9 Fr. Karl Storz – Endoskope, Tuttlingen, Germany 61029D
Examination Sheath, 9 Fr. Karl Storz – Endoskope, Tuttlingen, Germany 61029C
Fiber Optic Light Cable, 3.5mm Karl Storz – Endoskope, Tuttlingen, Germany 69495NL
Fluorescein Blue Filter System Karl Storz – Endoskope, Tuttlingen, Germany 20100032
Fluorescein Barrier Filter Karl Storz – Endoskope, Tuttlingen, Germany 20100033
Foot switch Karl Storz – Endoskope, Tuttlingen, Germany 20010430
HOPKINS Telescope, 1.9mm, Length 10cm Karl Storz – Endoskope, Tuttlingen, Germany 1830231
SCB D-light P  Karl Storz – Endoskope, Tuttlingen, Germany 20 133720
SCB tricam SL II Karl Storz – Endoskope, Tuttlingen, Germany 20 2230 20
Tubing set instruments VETPUMP II Karl Storz – Endoskope, Tuttlingen, Germany 69811
Tricam PDD PAL Karl Storz – Endoskope, Tuttlingen, Germany 20221037
UniVet Porta Groppler Medizintechnik, Deggendorf, Germany BKGM 0451
Vetpump 2 Karl Storz – Endoskope, Tuttlingen, Germany 69321620

References

  1. Bettenworth, D., et al. Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 54, 748-755 (2013).
  2. Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R., Welch, M. J. Small animal imaging. current technology and perspectives for oncological imaging. European journal of cancer. 38, 2173-2188 (2002).
  3. Huang, E. H., et al. Colonoscopy in mice. Surgical endoscopy. 16, 22-24 (2002).
  4. Becker, C., et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut. 54, 950-954 (2005).
  5. Becker, C., Fantini, M. C., Neurath, M. F. High resolution colonoscopy in live mice. Nature protocols. 1, 2900-2904 (2006).
  6. Neurath, M. F., et al. Assessment of tumor development and wound healing using endoscopic techniques in mice. Gastroenterology. 139, 1837-1843 (2010).
  7. Pickert, G., et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. The Journal of experimental medicine. 206, 1465-1472 (2009).
  8. Shapira, Y., et al. Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models. Plos one. 4, e4776 (2009).
  9. Wirtz, S., Neufert, C., Weigmann, B., Neurath, M. F. Chemically induced mouse models of intestinal inflammation. Nature protocols. 2, 541-546 (2007).
  10. Neufert, C., Becker, C., Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nature protocols. 2, 1998-2004 (2007).
  11. Dieleman, L. A., et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical and experimental immunology. 114, 385-391 (1998).
  12. Gao, Y., et al. Colitis-accelerated colorectal cancer and metabolic dysregulation in a mouse model. Carcinogenesis. 34, 1861-1869 (2013).
  13. Foersch, S., Neufert, C., Neurath, M. F., Waldner, M. J. Endomicroscopic Imaging of COX-2 Activity in Murine Sporadic and Colitis-Associated Colorectal Cancer. Diagnostic and therapeutic endoscopy. 2013, 250641 (2013).
  14. Bremer, C., Ntziachristos, V., Weissleder, R. Optical-based molecular imaging: contrast agents and potential medical applications. European radiology. 13, 231-243 (2003).
  15. Keller, R., Winde, G., Terpe, H. J., Foerster, E. C., Domschke, W. Fluorescence endoscopy using a fluorescein-labeled monoclonal antibody against carcinoembryonic antigen in patients with colorectal carcinoma and adenoma. Endoscopy. 34, 801-807 (2002).
  16. Jones, M. K., Tomikawa, M., Mohajer, B., Tarnawski, A. S. Gastrointestinal mucosal regeneration: role of growth factors. Frontiers in bioscience : a journal and virtual library. 4, 303-309 (1999).
  17. Mertz, H. R., Walsh, J. H. Peptic ulcer pathophysiology. The Medical clinics of North America. 75, 799-814 (1991).
  18. Pantelis, D., et al. The effect of sealing with a fixed combination of collagen matrix-bound coagulation factors on the healing of colonic anastomoses in experimental high-risk mice models. Langenbeck’s archives of surgery / Deutsche Gesellschaft fur Chirurgie. 395, 1039-1048 (2010).
  19. Burk, R. R. A factor from a transformed cell line that affects cell migration. Proceedings of the National Academy of Sciences of the United States of America. 70, 369-372 (1973).
  20. Msaki, A., et al. The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. Molecular biology of the cell. 22, 3032-3040 (2011).
  21. Zigmond, E., et al. Utilization of murine colonoscopy for orthotopic implantation of colorectal cancer. PloS one. 6, e28858 (2011).
  22. Foersch, S., et al. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut. 59, 1046-1055 (2010).
  23. Mitsunaga, M., et al. Fluorescence endoscopic detection of murine colitis-associated colon cancer by topically applied enzymatically rapid-activatable probe. Gut. 62, 1179-1186 (2013).

Play Video

Cite This Article
Brückner, M., Lenz, P., Nowacki, T. M., Pott, F., Foell, D., Bettenworth, D. Murine Endoscopy for In Vivo Multimodal Imaging of Carcinogenesis and Assessment of Intestinal Wound Healing and Inflammation. J. Vis. Exp. (90), e51875, doi:10.3791/51875 (2014).

View Video