Summary

رابيد التنميط الجيني للحيوانات تلاه إنشاء الثقافات الأولية من الخلايا العصبية في الدماغ

Published: January 29, 2015
doi:

Summary

وصفنا إجراءات لوضع العلامات والتنميط الجيني الفئران حديثي الولادة وتوليد الثقافات العصبية الأولية منها. والتنميط الجيني هو سريع وفعال وموثوق بها، ويسمح لاستخراج-نوكليك حمض الآلي. وهذا مفيد خصوصا بالنسبة للفئران المميتة neonatally وثقافاتهم التي تتطلب استكمال مسبق من التنميط الجيني.

Abstract

وغالبا ما يتطلب تحليل عالية الدقة من التشكل وظيفة الخلايا العصبية الثدييات والتنميط الجيني للحيوانات الفردية تليها تحليل الثقافات الأولية من الخلايا العصبية. نحن تصف مجموعة من الإجراءات ل: وصفها الفئران حديثي الولادة ليتم مرمزة، التنميط الجيني السريع، وإنشاء الثقافات منخفض الكثافة من الخلايا العصبية في الدماغ من هذه الفئران. وصفت الفئران الفردية عن طريق الوشم، والذي يسمح لتحديد المدى الطويل الأمد في مرحلة البلوغ. التنميط الجيني بواسطة بروتوكول وصف سريع وفعال، ويسمح لاستخراج الآلي للحامض النووي مع موثوقية جيدة. وهذا مفيد في ظل الظروف التي تكون فيها الوقت الكافي للالتنميط الجيني التقليدي غير متوفر، على سبيل المثال، في الفئران التي تعاني من الفتك حديثي الولادة. يتم إنشاؤها الثقافات العصبية الأولية في منخفض الكثافة، والتي تمكن تجارب التصوير في قرار مكانية عالية. تتطلب هذه الطريقة ثقافة إعداد طبقات المغذية الدبقية قبل طلاء الخلايا العصبية. عيتم تطبيق rotocol في مجملها إلى نموذج الفأر من خلل التوتر اضطراب حركة DYT1 (ΔE-torsinA الضربة القاضية في الفئران)، ويتم إعداد الثقافات العصبية من الحصين، القشرة الدماغية والجسم المخطط من هذه الفئران. ويمكن تطبيق هذا البروتوكول على الفئران مع طفرات وراثية أخرى، وكذلك للحيوانات من الأنواع الأخرى. وعلاوة على ذلك، والمكونات الفردية للبروتوكول يمكن استخدامها لعزل المشاريع الفرعية. وبالتالي هذا البروتوكول سيكون لها تطبيقات واسعة، ليس فقط في علم الأعصاب ولكن أيضا في مجالات أخرى من مجالات العلوم البيولوجية والطبية.

Introduction

وقد أثبتت نماذج القوارض من الأمراض الوراثية مفيدة في إنشاء الوظائف الفسيولوجية للبروتينات طبيعية والأحماض النووية، وكذلك العواقب المرضية من العيوب في هذه. وتشمل الأمثلة الفئران ناقص لالبروتينات المشاركة في الوظائف الخلوية الرئيسية، وكذلك نماذج الماوس من الاضطرابات مثل مرض الزهايمر. ومع ذلك، يمكن بعض التلاعب الجيني يؤدي إلى الفتك حديثي الولادة بفترة وجيزة أو بعد بضعة أيام من الولادة. في هذه الحالات، والثقافات الخلية الأولية هي أداة مهمة لخلايا حية يمكن الحصول عليها من الجراء الجنينية أو حديثي الولادة قبل الموت، فإنها يمكن أن يستمر على الأقل لبضعة أسابيع في المختبر، وخلال هذا الوقت اللازم لتطوير الخلايا العصبية في وقت مبكر يمكن أن يتبعه الكيمياء الحيوية والوظيفية والمورفولوجية التجارب. لالثقافات الأولية، يمكن أن يكون مفيدا لوحة الخلايا العصبية في منخفض الكثافة. هذا يجعل من الممكن تصور somata الفردي، التشعبات، ومهاوي محور عصبي وtermi العصبيةالاشارات في قرار مكانية عالية. ومع ذلك، فإن البقاء على قيد الحياة والتفريق بين الخلايا العصبية في منخفض الكثافة عادة ما يتطلب أنهم مطلي على طبقة المغذية الدبقية، وشارك في تربيتها مع الخلايا الدبقية في غياب الاتصال الجسدي معهم، أو مثقف في المتوسط ​​مشروطة الدبقية 1.

يمكن إنشاء منخفض الكثافة الثقافات العصبية على طبقات المغذية الدبقية أن يعتمد على التنميط الجيني سريعة وموثوق بها مسبقا – في غضون بضع ساعة وعلى النقيض من بضعة أيام. السرعة هي أهمية خاصة عندما يحتاج النمط الجيني الخلايا العصبية لتكون مطابقة لتلك التي من طبقة المغذية الدبقية أعدت مسبقا. وكمثال عملي أكثر، قد يكون من الضروري أن تقرر أي الجراء منها الوراثي لاستخدامها في توليد الثقافات، لتحسين كفاءة تجربة.

نحن هنا لشرح بروتوكول العمل التي استخدمت لسرعة، مبسط وموثوق بها الماوس التنميط الجيني في المنشورات السابقة 2-6. ذيول الماوس ووتستخدم مجموعة المتاحة تجاريا. ويشمل هذا البروتوكول خطوة واحدة استخراج الأحماض النووية من الأنسجة، ويتطلب يست تنقية خطوة نوكليك حمض ولا استخدام منطقة عازلة إنهاء ('وقف الحل'). ويتضح موثوقية هذه الطريقة التنميط الجيني من خلال تقديم نتائج سلسلة من الاختبارات عندما يتم إدخال الخلافات مع الاحترام لكمية بدءا من العينات، وعمر الحيوانات وطول amplicons PCR. هذه المجموعة تقدم مزايا استخراج الآلي والموثوقية.

من أجل أن تكون شاملة، ويتجلى أيضا استخدام الوشم لتحديد المدى الطويل من الفئران مرمزة. ويتحقق من خلال تطبيق الوشم الحبر الوشم إلى الأدمة من الجلد (تحت البشرة) 7. ووصف إجراءات الوشم منصات مخلب من الفئران حديثي الولادة أو 1 يوم القديمة، على الرغم من أن الوشم يمكن تطبيقها على أجزاء أخرى من الجسم، مثل ذيول وأصابع القدمين، وأنيمالمرض من جميع الأعمار. وبالإضافة إلى ذلك، سيتم عرض إجراءات الطلاء وزراعة الخلايا العصبية الماوس في مناطق ذات كثافة منخفضة، استنادا إلى إعداد الأمثل من أنواع مختلفة من طبقات المغذية الدبقية 2،8.

نحن نستخدم نموذج الجيني الماوس للالموروثة اضطراب عصبي DYT1 خلل التوتر – اضطراب حركة جسمية مهيمنة الناجمة عن طفرة في الجين TOR1A (c.904_906delGAG / c.907_909delGAG، p.Glu302del / p.Glu303del) 9. البروتين المشفرة، torsinA، ينتمي إلى "ATPases المرتبطة بأنشطة متنوعة الخلوية" (AAA +) عائلة من البروتينات، التي عموما على أداء مهام مثل كوصي، والمساعدة في الأعضاء: البروتين تتكشف، البروتين معقدة التفكيك، والاتجار الغشاء، والانصهار الحويصلة 10-13. نتائج طفرة في الحذف في إطار كودون لحمض الجلوتاميك، ويمكن أن يؤدي إلى مظهر من مظاهر "المبكر بداية المعمم خلل التوتر معزولة" 14،15. ومع ذلك، فإن مسارآليات ophysiological المسؤولة عن هذا الاضطراب لا تزال غير مفهومة تماما. في نموذج الفأر المغلوب في، أليل متحولة هو Tor1a tm2Wtd، المذكورة فيما بعد باسم Tor1a ΔE. متخالف ΔE-torsinA الضربة القاضية في الفئران هي المرضى من البشر قابلة للحياة وتقليد وراثيا مع DYT1 خلل التوتر، في حين متماثلة اللواقح الضربة القاضية في الفئران تموت بعد الولادة 16،17، مع الكمون حتى الموت بعد الولادة تتأثر الخلفية الوراثية 18. الوفاة المبكرة لمتماثل الفئران الضربة القاضية في يقتضي أن كلا من التنميط الجيني للحيوانات وإنشاء الثقافات العصبية يتم الانتهاء بسرعة. وكمثال آخر على التنميط الجيني، Tfap2a (عامل النسخ AP-2α، وتفعيل محسن البروتين 2α ملزمة) وسوف تستخدم. البروتين المشفرة بواسطة هذا الجين مهم في تنظيم العمليات الخلوية متعددة، مثل انتشار، والتمايز والبقاء وموت الخلايا المبرمج 19.

Protocol

ملاحظة: تمت الموافقة على جميع الإجراءات الحيوان أجريت في هذه الدراسة من قبل لجنة رعاية واستخدام الحيوان المؤسسي من جامعة ولاية ايوا. 1. تحديد المدى الطويل من الفئران عن طريق الوشم على وسادات باو <li style=";text-a…

Representative Results

كمثال لتطبيق هذا البروتوكول، وتظهر نتائج ممثلة لوصفها الفئران عن طريق الوشم، والتنميط الجيني يمكن الاعتماد عليها تحت ظروف تجريبية مختلفة، وإنشاء الثقافات العصبية الأولية على طبقات المغذية الدبقية. الوشم <p class="jove_conte…

Discussion

بروتوكول المعروضة هنا يشمل إجراءات الوشم لتسمية / تحديد الفئران، لالتنميط الجيني الفئران من نصائح الذيل، وزراعة الخلايا العصبية مخ الفأر في منخفض الكثافة. في جولة واحدة من التجارب باستخدام 6-8 الجراء، وعادة ما تتطلب هذه الإجراءات ~ 0.5 ساعة، ~ 4 ساعة و ~ 2 ساعة، على التوال…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank researchers at the University of Iowa, Drs. Luis Tecedor, Ines Martins and Beverly Davidson for instructions and helpful comments regarding striatal cultures, and Drs. Kara Gordon, Nicole Bode and Pedro Gonzalez-Alegre for genotyping assistance and discussions. We also thank Dr. Eric Weyand (Animal Identification and Marking Systems) for helpful comments regarding tattooing, and Dr. Shutaro Katsurabayashi (Fukuoka University) for helpful comments regarding the mouse culture. This work was supported by grants from the American Heart Association, the Department of Defense (Peer Reviewed Medical Research Program award W81XWH-14-1-0301), the Dystonia Medical Research Foundation, the Edward Mallinckrodt, Jr. Foundation, the National Science Foundation, and the Whitehall Foundation (N.C.H.).

Materials

REAGENTS – tattooing
Machine Cleanser Animal Identification and Marking Systems, Inc. NMCR3 This is used to clean the needles and the holder after tattooing.
Machine Drying Agent Animal Identification and Marking Systems, Inc. NDAR4 This is used to dry the needles and holder after cleaning.
Neonate Tattoo Black Pigment Animal Identification and Marking Systems, Inc. NBP01
Skin Prep Applicator Animal Identification and Marking Systems, Inc. NSPA1 Q-tip.
Skin Prep solution Animal Identification and Marking Systems, Inc. NSP01 This reagent delivers a thin layer of oil that enhances the efficiency of tattooing and prevents tattoo fading, by (information from vendor): 1) preventing non-tattooed skin from being stained temporarily, thereby allowing the quality of a paw pad tattoo to be easily evaluated before the pup is returned to its home cage – the stained skin surface can be confused with the tattooed skin, 2) reducing skin damage during tattooing – softening the skin and lubricating the needle will help the needle penetrate the skin without causing skin damage, and 3) preventing molecular oxygen from entering the skin, thereby reducing inflammatory responses to reactive oxygen species that can be generated.
REAGENTS – genotyping
EZ Fast Tissue/Tail PCR Genotyping Kit (Strip Tube Format) EZ BioResearch LLC G2001-100
2X PCR Ready Mix II EZ BioResearch LLC G2001-100 A red, loading dye for electrophoresis is included in the 2X PCR Ready Mix solution.
Tissue Lysis Solution A EZ BioResearch LLC G2001-100 Prepare DNA Extraction Solution by mixing 20 µl of Tissue Lysis Solution A and 180 µl of Tissue Lysis Solution B per specimen.
Tissue Lysis Solution B EZ BioResearch LLC G2001-100 Prepare DNA Extraction Solution by mixing 20 µl of Tissue Lysis Solution A and 180 µl of Tissue Lysis Solution B per specimen.
Acetic acid, glacial VWR BDH 3092
Agarose optimized grade, molecular biology grade rpi A20090-500  We use 2% agarose gels in TAE buffer containing the SYBR Safe DNA gel stain (diluted 10,000-fold) or ethidium bromide (0.5 µg/ml gel volume).
Ethidium bromide Sigma-Aldrich E7637-1G
Ethylenediamine tetraacetic acid, disodium salt dihydrate (EDTA) Fisher BP120-500
Filtered Pipet Tips, Aerosol-Free, 0.1-10 µl Dot Scientific Inc UG104-96RS  Use pipette tips that are sterile and free of DNA, RNase and DNase. For all steps involving DNA, use filtered pipette tips to avoid cross-contamination.
Filtered Pipet Tips, Premium Fit Filter Tips, 0.5-20 µl Dot Scientific Inc UG2020-RS Use pipette tips that are sterile and free of DNA, RNase and DNase. For all steps involving DNA, use filtered pipette tips to avoid cross-contamination.
Filtered Pipet Tips, Premium Fit Filter Tips, 1-200 µl Dot Scientific Inc UG2812-RS Use pipette tips that are sterile and free of DNA, RNase and DNase. For all steps involving DNA, use filtered pipette tips to avoid cross-contamination.
Molecular weight marker, EZ DNA Even Ladders 100 bp EZ BioResearch LLC L1001 We use either of these three molecular weight markers.
Molecular weight marker, EZ DNA Even Ladders 1000 bp EZ BioResearch LLC L1010
Molecular weight marker, TrackIt, 100 bp DNA Ladder GIBCO-Invitrogen 10488-058
PCR tubes, 8-tube strips with individually attached dome top caps, natural, 0.2 ml  USA Scientific 1402-2900 Use tubes that are sterile and free of DNA, RNase and DNase. An 8-tube strip is easy to handle and to group the specimens than individual tubes.
PCR tubes, Ultraflux Individual  rpi 145660 Use tubes that are sterile and free of DNA, RNase and DNase.
Seal-Rite 0.5 ml microcentrifuge tube, natural USA Scientific 1605-0000 Use tubes that are sterile and free of DNA, RNase and DNase.
SYBR Safe DNA gel stain * 10,000x concentration in DMSO GIBCO-Invitrogen S33102
Tris base rpi T60040-1000
Primers for amplifying Tor1a gene in ΔE-torsinA knock-in mice 5'-AGT CTG TGG CTG GCT CTC CC-3' (forward) and 5'-CCT CAG GCT GCT CAC AAC CAC-3' (reverse) (reference 18). These primers were used at a final concentration of 1.0 ng/µl (~0.16 µM) (reference 2).
Primers for amplifying Tfap2a gene in wild-type mice 5'-GAA AGG TGT AGG CAG AAG TTT GTC AGG GC-3' (forward), 5'-CGT GTG GCT GTT GGG GTT GTT GCT GAG GTA-3' (reverse) for the 498-bp amplicon, 5'-CAC CCT ATC AGG GGA GGA CAA CTT TCG-3' (forward), 5'-AGA CAC TCG GGC TTT GGA GAT CAT TC-3' (reverse) for the 983-bp amplicon, and 5'-CAC CCT ATC AGG GGA GGA CAA CTT TCG-3' (forward), 5'-ACA GTG TAG TAA GGC AAA GCA AGG AG-3' (reverse) for the 1990-bp amplicon. These primers are used at 0.5 µM.
REAGENTS – cell culture
5-Fluoro-2′-deoxyuridine Sigma-Aldrich F0503-100MG See comments section of uridine for more information.
B-27 supplement GIBCO-Invitrogen 17504-044
Cell Culture Dishes 35 x 10 mm Dishes, Tissue Culture-treated BD falcon 353001
Cell Culture Flasks, T25, Tissue Culture-treated, Canted-neck, plug-seal cap, 25 cm2 Growth Area, 70 ml BD falcon 353082
Cell Culture Flasks, T75, Tissue Culture-treated, Canted-neck, vented cap, 75 cm2 Growth Area, 250 ml BD falcon 353136
Conical Tube, polypropylene, 15 ml BD falcon 352095
Countess (cell number counter) chamber slides GIBCO-Invitrogen C10312
Cytosine β-D-Arabinofuranoside hydrochloride (Ara-C hydrochloride) Sigma-Aldrich C6645-100mg
D-(+)-Glucose (Dextrose) anhydrous, SigmaUltra, 99.5% (GC) Sigma-Aldrich G7528-250G
Dish, Petri glass 100 x 15 mm Pyrex 3160-101
Distilled water GIBCO-Invitrogen 15230-147
DNase Type II Sigma-Aldrich D4527-200KU Stock solution is prepared at 1500 units/20 μl = 75000 units/ml in distilled water.
Dulbecco's Modified Eagle Medium (DMEM), high glucose, GlutaMAX, pyruvate GIBCO-Invitrogen 10569-010, 500 ml
Fast PES Filter Unit, 250 ml, 50 mm diameter membrane, 0.2 µm Pore Size Nalgene 568-0020
Fast PES Filter Unit, 500 ml, 90 mm diameter membrane, 0.2 µm Pore Size Nalgene 569-0020
Fetal bovine serum (FBS) GIBCO-Invitrogen 26140-079
Glass coverslip, 12 mm Round, thickness 0.09–0.12 mm, No. 0 Carolina 633017
GlutaMAX-I GIBCO-Invitrogen 35050-061
Hanks' Balanced Salts Sigma-Aldrich H2387-10X
HEPES, ≥99.5% (titration) Sigma-Aldrich H3375-250G
Hydrochloric acid, 37%, A.C.S reagent Sigma-Aldrich 258148-100 ML
Insulin Sigma-Aldrich I5500-250 mg
Magnesium sulfate heptahydrate, MgSO4•(7H2O), BioUltra, ≥99.5% (Fluka) Sigma-Aldrich 63138-250G
Matrigel Basement Membrane Matrix solution, Phenol Red-Free BD Biosciences 356237 This is the coating material for coverslips and flasks. 1) To prepare it, thaw the Matrigel Basement Membrane Matrix solution on ice, which usually takes ~1 day. Using a pre-cooled pipette, aliquot the thawed solution into pre-cooled T25 flasks on ice, and store the flasks at -20°C. To prepare the working Matrigel solution, thaw the aliquotted Matrigel in a flask on ice, dilute 50-fold by adding pre-cooled MEM solution and keep the diluted solution at 4°C. It is important to pre-cool all cultureware and media that come into contact with Matrigel, except during and after the coating of coverslips, to prevent it from prematurely forming a gel. 2) To coat the glass coverslips or culture flasks with Matrigel, apply the Matrigel solution to the surface. Before plating cells, it is important to completely dry up the surface. For this purpose, it might be helpful to aspirate Matrigel during the cellular centrifugation immediately before plating the cells and to allow enough time for drying.
Minimum Essential Medium (MEM) GIBCO-Invitrogen 51200-038
MITO+ Serum Extender, 5 ml BD Biosciences 355006
Multiwell Plates, Tissue Culture-treated 24-well plate BD falcon 353047
Multiwell Plates, Tissue Culture-treated 6-well plate BD falcon 353046
Neurobasal-A Medium (1X), liquid GIBCO-Invitrogen 10888-022
Nitric Acid VWR bdh 3044
NS (Neuronal Supplement) 21  prepared in the lab Source: reference 69
Pasteur pipets, 5 ¾”  Fisher 13-678-6A Use this cotton-plugged 5 ¾” Pasteur pipette for cellular trituration. Fire-polish the tip beforehand to smooth the cut surface and to reduce the internal diameter to 50-80% of the original. Too small a tip will disrupt the cells and reduce cell viability, but too large a tip will decrease the efficiency of trituration.
Pasteur pipets, 9”  Fisher 13-678-6B
Potassium chloride (KCl), SigmaUltra, ≥99.0% Sigma-Aldrich P9333-500G
Serological pipet, 2 ml BD falcon 357507
Serological pipet, 5 ml  BD falcon 357543
Serological pipet, 10 ml BD falcon 357551
Serological pipet, 25 ml BD falcon 357525
Serological pipet, 50 ml  BD falcon 357550
Sodium bicarbonate (NaHCO3, Sodium hydrogen carbonate), SigmaUltra, ≥99.5% Sigma-Aldrich S6297-250G
Sodium chloride (NaCl), SigmaUltra, ≥99.5% Sigma-Aldrich S7653-250G
Sodium hydroxide (NaOH), pellets, 99.998% trace metals basis Sigma-Aldrich 480878-250G
Sodium phosphate dibasic heptahydrate (Na2HPO4•(7H2O)), ≥99.99%, Aldrich Sigma-Aldrich 431478-250G
Sucrose, SigmaUltra, ≥99.5% (GC) Sigma-Aldrich S7903-250G
Syringe filter, sterile, 0.2 µm Corning 431219
Syringe, 3 ml BD falcon 309585
Transferrin, Holo, bovine plasma Calbiochem 616420
Trypan Blue stain, 0.4% GIBCO-Invitrogen T10282 This is used for counting live/dead cells. Renew an old trypan blue solution if it is re-used many times (e.g. several times a week for several weeks), because it will form precipitates and result in erroneous readouts of cellular density.
Trypsin, type XI Sigma-Aldrich T1005-5G
Trypsin-EDTA solution, 0.25%  GIBCO-Invitrogen 25200-056
Uridine Sigma-Aldrich U3003-5G Stock solution is prepared at 50-mg 5-fluoro-2'-deoxyuridine and 125-mg uridine in 25 ml DMEM (8.12 and 20.48 mM, respectively).
REAGENTS – immunocytochemistry
Antibody, rabbit polyclonal anti-MAP2 Merck Millipore AB5622
Antibody, mouse monoclonal anti-GFAP cocktail Merck Millipore NE1015

References

  1. Goslin, K., Asmussen, H., Banker, G., Banker, G., Goslin, K. Ch. 13. Culturing Nerve Cells. , 339-370 (1998).
  2. Kakazu, Y., Koh, J. Y., Ho, K. W., Gonzalez-Alegre, P., Harata, N. C. Synaptic vesicle recycling is enhanced by torsinA that harbors the DYT1 dystonia mutation. Synapse. 66, 453-464 (2012).
  3. Kakazu, Y., Koh, J. Y., Iwabuchi, S., Gonzalez-Alegre, P., Harata, N. C. Miniature release events of glutamate from hippocampal neurons are influenced by the dystonia-associated protein torsinA. Synapse. 66, 807-822 (2012).
  4. Iwabuchi, S., Kakazu, Y., Koh, J. Y., Harata, N. C. Abnormal cytoplasmic calcium dynamics in central neurons of a dystonia mouse model. Neurosci. Lett. 548, 61-66 (2013).
  5. Koh, J. Y., Iwabuchi, S., Harata, N. C. Dystonia-associated protein torsinA is not detectable at the nerve terminals of central neurons. Neuroscience. 253C, 316-329 (2013).
  6. Iwabuchi, S., Koh, J. Y., Wang, K., Ho, K. W., Harata, N. C. Minimal change in the cytoplasmic calcium dynamics in striatal GABAergic neurons of a DYT1 dystonia knock-in mouse model. PLoS One. 8, e80793 (2013).
  7. Dahlborn, K., Bugnon, P., Nevalainen, T., Raspa, M., Verbost, P., Spangenberg, E. Report of the Federation of European Laboratory Animal Science Associations Working Group on animal identification. Lab. Anim. 47, 2-11 (2013).
  8. Kawano, H., et al. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles. PLoS One. 7, e48034 (2012).
  9. Ozelius, L. J., et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40-48 (1997).
  10. Hanson, P. I., Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell. Biol. 6, 519-529 (2005).
  11. White, S. R., Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic. 8, 1657-1667 (2007).
  12. Burdette, A. J., Churchill, P. F., Caldwell, G. A., Caldwell, K. A. The early-onset torsion dystonia-associated protein, torsinA, displays molecular chaperone activity in vitro. Cell Stress Chaperones. 15, 605-617 (2010).
  13. Zhao, C., Brown, R. S., Chase, A. R., Eisele, M. R., Schlieker, C. Regulation of Torsin ATPases by LAP1 and LULL1. Proc. Natl. Acad. Sci. U. S. A. 110, E1545-1554 (2013).
  14. Ozelius, L. J., Lubarr, N., Bressman, S. B. Milestones in dystonia. Mov. Disord. 26, 1106-1126 (2011).
  15. Albanese, A., et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863-873 (2013).
  16. Goodchild, R. E., Kim, C. E., Dauer, W. T. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 48, 923-932 (2005).
  17. Dang, M. T., et al. Generation and characterization of Dyt1 ΔGAG knock-in mouse as a model for early-onset dystonia. Exp. Neurol. 196, 452-463 (2005).
  18. Tanabe, L. M., Martin, C., Dauer, W. T. Genetic background modulates the phenotype of a mouse model of DYT1 dystonia. PLoS One. 7, e32245 (2012).
  19. Huang, Z., Xu, H., Sandell, L. Negative regulation of chondrocyte differentiation by transcription factor AP-2α. J. Bone Miner. Res. 19, 245-255 (2004).
  20. Hall, R. D., Lindholm, E. P. Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66, 23-38 (1974).
  21. Kavalali, E. T., Klingauf, J., Tsien, R. W. Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proc. Natl. Acad. Sci. U. S. A. 96, 12893-12900 (1999).
  22. Iwaki, S., Matsuo, A., Kast, A. Identification of newborn rats by tattooing. Lab. Anim. 23, 361-364 (1989).
  23. Wang, L. A primer on rodent identification methods. Lab. Anim. 34, 64-67 (2005).
  24. Deacon, R. M. Housing, husbandry and handling of rodents for behavioral experiments). Nat. Protoc. 1, 936-946 (2006).
  25. Castelhano-Carlos, M. J., Sousa, N., Ohl, F., Baumans, V. Identification methods in newborn C57BL/6 mice: a developmental and behavioural evaluation. Lab. Anim. 44, 88-103 (2010).
  26. Schaefer, D. C., Asner, I. N., Seifert, B., Burki, K., Cinelli, P. Analysis of physiological and behavioural parameters in mice after toe clipping as newborns. Lab. Anim. 44, 7-13 (2010).
  27. Doan, L., Monuki, E. S. Rapid genotyping of mouse tissue using Sigma’s Extract-N-Amp Tissue PCR. Kit. J. Vis. Exp. , e626 (2008).
  28. Chum, P. Y., Haimes, J. D., Andre, C. P., Kuusisto, P. K., Kelley, M. L. Genotyping of plant and animal samples without prior DNA purification. J. Vis. Exp. , e3844 (2012).
  29. Demeestere, I., et al. Follicle-stimulating hormone accelerates mouse oocyte development in vivo. Biol. Reprod. 87 (3), 1-11 (2012).
  30. Warner, D. R., Wells, J. P., Greene, R. M., Pisano, M. M. Gene expression changes in the secondary palate and mandible of Prdm16-/- mice. Cell Tissue Res. 351, 445-452 (2013).
  31. Higgins, D., Banker, G., Banker, G., Goslin, K. Ch. 3. Culturing Nerve Cells. , 37-78 (1998).
  32. Ahlemeyer, B., Baumgart-Vogt, E. Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice. J. Neurosci. Methods. 149, 110-120 (2005).
  33. Nunez, J. Primary culture of hippocampal neurons from P0 newborn rats. J. Vis. Exp. e895. (19), e895 (2008).
  34. Viesselmann, C., Ballweg, J., Lumbard, D., Dent, E. W. Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons. J. Vis. Exp. , e2373 (2011).
  35. Leach, M. K., et al. The culture of primary motor and sensory neurons in defined media on electrospun poly-L-lactide nanofiber scaffolds. J. Vis. Exp. , e2389 (2011).
  36. Beaudoin, G. M., et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741-1754 (2012).
  37. Seibenhener, M. L., Wooten, M. W. Isolation and culture of hippocampal neurons from prenatal mice. J. Vis. Exp. , e3634 (2012).
  38. Pacifici, M., Peruzzi, F. Isolation and culture of rat embryonic neural cells: a quick protocol. J. Vis. Exp. , e3965 (2012).
  39. Tischbirek, C. H., et al. Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs. Neuron. 74, 830-844 (2012).
  40. Nakanishi, K., Nakanishi, M., Kukita, F. Dual intracellular recording of neocortical neurons in a neuron-glia co-culture system. Brain Res. Brain Res. Protoc. 4, 105-114 (1999).
  41. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406-2415 (2006).
  42. Kaech, S., Huang, C. F., Banker, G. General considerations for live imaging of developing hippocampal neurons in culture. Cold Spring Harb. Protoc. 2012 (3), 312-318 (2012).
  43. Song, H., Stevens, C. F., Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature. 417, 39-44 (2002).
  44. Tang, X., et al. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res. 11, 743-757 (2013).
  45. Ivkovic, S., Ehrlich, M. E. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J. Neurosci. 19, 5409-5419 (1999).
  46. Kaneko, A., Sankai, Y. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix. PLoS One. 9, e102703 (2014).
  47. Wang, X. F., Cynader, M. S. Effects of astrocytes on neuronal attachment and survival shown in a serum-free co-culture system. Brain Res. Brain Res. Protoc. 4, 209-216 (1999).
  48. Fath, T., Ke, Y. D., Gunning, P., Gotz, J., Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. Nat. Protoc. 4, 78-85 (2009).
  49. Shimizu, S., Abt, A., Meucci, O. Bilaminar co-culture of primary rat cortical neurons and glia. J. Vis. Exp. , e3257 (2011).
  50. Mennerick, S., Que, J., Benz, A., Zorumski, C. F. Passive and synaptic properties of hippocampal neurons grown in microcultures and in mass cultures. J. Neurophysiol. 73, 320-332 (1995).
  51. Chen, G., Harata, N. C., Tsien, R. W. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc. Natl. Acad. Sci. U. S. A. 101, 1063-1068 (2004).
  52. Albuquerque, C., Joseph, D. J., Choudhury, P., MacDermott, A. B. Dissection, plating, and maintenance of dorsal horn neuron cultures. Cold Spring Harb. Protoc. 2009, (2009).
  53. Xu, H. P., Gou, L., Dong, H. W. Study glial cell heterogeneity influence on axon growth using a new coculture method. J. Vis. Exp. , e2111 (2010).
  54. Daniel, J. A., Galbraith, S., Iacovitti, L., Abdipranoto, A., Vissel, B. Functional heterogeneity at dopamine release sites. J. Neurosci. 29, 14670-14680 (2009).
  55. Calakos, N., Schoch, S., Sudhof, T. C., Malenka, R. C. Multiple roles for the active zone protein RIM1α in late stages of neurotransmitter release. Neuron. 42, 889-896 (2004).
  56. Garcia-Junco-Clemente, P., et al. Cysteine string protein-α prevents activity-dependent degeneration in GABAergic synapses. J. Neurosci. 30, 7377-7391 (2010).
  57. Hogins, J., Crawford, D. C., Zorumski, C. F., Mennerick, S. Excitotoxicity triggered by Neurobasal culture medium. PLoS One. 6, e25633 (2011).
  58. Panatier, A., Vallee, J., Haber, M., Murai, K. K., Lacaille, J. C., Robitaille, R. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell. 146, 785-798 (2011).
  59. Noble, M., Mayer-Proschel, M., Banker, G., Goslin, K. . Ch. 18. Culturing Nerve Cells. , 499-543 (1998).
  60. Ahlemeyer, B., Kehr, K., Richter, E., Hirz, M., Baumgart-Vogt, E., Herden, C. Phenotype, differentiation, and function differ in rat and mouse neocortical astrocytes cultured under the same conditions. J. Neurosci. Methods. 212, 156-164 (2013).
  61. Malgaroli, A., Tsien, R. W. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature. 357, 134-139 (1992).
  62. Ryan, T. A., Reuter, H., Wendland, B., Schweizer, F. E., Tsien, R. W., Smith, S. J. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron. 11, 713-724 (1993).
  63. Harata, N. C., Choi, S., Pyle, J. L., Aravanis, A. M., Tsien, R. W. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron. 49, 243-256 (2006).
  64. Yamamoto, M., Steinbusch, H. W., Jessell, T. M. Differentiated properties of identified serotonin neurons in dissociated cultures of embryonic rat brain stem. J. Cell Biol. 91, 142-152 (1981).
  65. Nakajima, Y., Masuko, S. A technique for culturing brain nuclei from postnatal rats. Neurosci. Res. 26, 195-203 (1996).
  66. Arttamangkul, S., Torrecilla, M., Kobayashi, K., Okano, H., Williams, J. T. Separation of μ-opioid receptor desensitization and internalization: endogenous receptors in primary neuronal cultures. J. Neurosci. 26, 4118-4125 (2006).
  67. O’Farrell, C. A., Martin, K. L., Hutton, M., Delatycki, M. B., Cookson, M. R., Lockhart, P. J. Mutant torsinA interacts with tyrosine hydroxylase in cultured cells. Neuroscience. 164, 1127-1137 (2009).
  68. Jiang, M., Deng, L., Chen, G. High Ca2+-phosphate transfection efficiency enables single neuron gene analysis. Gene Ther. 11, 1303-1311 (2004).
  69. Chen, Y., Stevens, B., Chang, J., Milbrandt, J., Barres, B. A., Hell, J. W. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods. 171, 239-247 (2008).
  70. Robert, F., Hevor, T. K. Abnormal organelles in cultured astrocytes are largely enhanced by streptomycin and intensively by gentamicin. Neuroscience. 144, 191-197 (2007).
  71. Robert, F., Cloix, J. F., Hevor, T. Ultrastructural characterization of rat neurons in primary culture. Neuroscience. 200, 248-260 (2012).
check_url/51879?article_type=t

Play Video

Cite This Article
Koh, J., Iwabuchi, S., Huang, Z., Harata, N. C. Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons. J. Vis. Exp. (95), e51879, doi:10.3791/51879 (2015).

View Video