Summary

Kontrast Imaging i Mouse Embryoer hjelp Høyfrekvente ultralyd

Published: March 04, 2015
doi:

Summary

Her presenterer vi en protokoll for å injisere ultralyd mikrobobleutskillere kontrastmidler i stue, isolerte sent svangerskap scenen murine embryoer. Denne metoden gjør det mulig å studere perfusjon parametere og av vaskulære molekylære markører innenfor embryo ved hjelp av kontrastforsterket høyfrekvente ultralydavbildning.

Abstract

Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

Introduction

Kontrastforsterket ultralydavbildning gjør bruk av agenter mikrobobleutskillere kontrast å visualisere og karakterisere vaskulær miljø. Disse agentene aktiver invasiv vurdering av mikrosirkulasjonen, vaskularitet og kardiovaskulær funksjon. I tillegg kan modifikasjon av bobleoverflaten resulterer i målrettet mikroboble-binding til endotelceller biomarkører, som vist i prekliniske anvendelser av angiogenese, aterosklerose og inflammasjon 1,2 gjør molekylultralydavbildning av vaskulære hendelser mulige. Kontrastforsterket ultralyd kan derfor brukes til å identifisere de komplekse og ulike miljøer som påvirker friske og syke vaskulære tilstander 3-5.

I det siste nummeret av årene har interessen for nytten av mikroboble bildebehandling utvidet til den allsidige museembryo modell. Som en modell for pattedyr utvikling, innføring av mikrobobler inn i den embryonale blodkar forbedrer fysiologiskestudie av utviklingen av sirkulasjonssystemet (for eksempel blodstrøm, minuttvolum) og i tilfeller av transgene og målrettede mutante mus modeller av hjertesykdom 6,7, kan gi innsikt i hvordan genetiske faktorer endre kardiovaskulær funksjon. Faktisk analyserer kvantitativt og kvalitativt 2D av embryonale hjerne vaskulaturen har allerede blitt oppnådd 8. Videre presenterer museembryo som en utmerket modell for å undersøke bindingen av målrettede mikrobobler til vaskulære markører in vivo. Bartelle et al. 9, for eksempel, har innført avidinbelagte mikrobobler inn embryo hjerte ventriklene å vurdere målrettet binding i Biotag-Bira transgene embryoer og undersøke vaskulær anatomi. Generering av heterozygote og homozygote musemodeller kan også brukes som et surrogat for tumormodellstudier tar sikte på å definere den kvantitative innholdet av molekylært ultralyd – et viktig referansesette denne teknikken til klinikken.

<p class = "jove_content"> Microbubbles er oftest introdusert til embryonale sirkulasjonen via intrahjerte injeksjoner i enkelt embryoer eksponert gjennom en laparotomi 8-10. I utero injeksjoner, men står overfor en rekke utfordringer. Disse inkluderer injeksjon veiledning, behovet for å motvirke bevegelse i mor og exteriorized embryo, vedlikehold av hemodynamisk levedyktighet hos mor og utlagte embryoer, adressering langsiktige effektene av anestesi og komplikasjoner på grunn av blødning 11. Derfor er målet med undersøkelsen har vært å utvikle en teknikk for å injisere mikrobobler inn i isolert levende sent stadium embryoer 12. Dette alternativet gir mer frihet i form av injeksjon kontroll og posisjonering, reproduserbarhet på bildeplanet uten hindringer, og forenklet bildeanalyse og kvantifisering.

I denne studien, skisserer vi en roman prosedyre for injeksjon av mikrobobler i levende museembryoer for det formål å studere mikroboble kinetisk atferd og studere målrettet mikrobobleutskillere binding til endogene endothelial markører overflate. Ikke-lineær kontrast spesifikk ultralydavbildning brukes til å måle av en rekke grunnleggende perfusjon parametere inkludert peak enhancement (PE), vaske-in rate og tid til maksimal (TTP) i isolerte E17.5 embryoer. Vi demonstrerer også gyldigheten av embryoet modell for vurdering av kvantitativ natur molekylær ultralyd i en embryonale endoglin tap av funksjon transgen musemodell, hvor endoglin er en klinisk relevant mål på grunn av sin høye uttrykk i vaskulære endotelceller på steder med aktiv angiogenese 13 . Heft endoglin-målrettet (MB E), rotte isotypen IgG 2 kontroll (MB C) og vilkårlige (MB U) mikrobobler evalueres i heterozygot endoglin (Eng +/-) og homozygot endoglin (Eng + / +) uttrykker embryoer. Analyse av målrettet binding avslører at molekyl ultralyd er i stand til å skille mellom endoglin genotyper og relatert reseptor-tettheter for å kvantifiserbare molekylultralydnivåer.

Protocol

MERK: De eksperimentelle prosedyrer utført i denne studien ble godkjent av Animal Care Utvalget ved Sunnybrook Research Institute (Toronto, Ontario, Canada). Prosedyrer for human behandling av dyr må følges til enhver tid. Det forutsettes at etterforskeren er opplært i grunnleggende bruk av en ultralyd imaging system. Denne protokollen fungerer best med to personer. 1. Dyre Modeller Mate CD-en mannlig og kvinnelig Mus musculus å få villtype embryoer for perfusjon st…

Representative Results

Injeksjon av ultralydkontrastmidler i ex utero mus embryo er avhengig av den vellykkede isolering av levende, sen-svangerskaps trinns embryoer fra livmor og opprettholdelse av levedyktighet i løpet av injeksjonen, og tilhørende ultralydavbildning. Når embryoet har blitt exteriorized og posisjonert, som vist i figur 1, er imidlertid injeksjon av kontrastmidlet inn i den embryoniske blodkar mulig. En typisk B-modus ultralydbilde av et E17.5 mus embryo er vist i figur 2A. Vaske…

Discussion

Kontrastmidler ultralyd ble injisert i sent stadium svangerskapet museembryoer og bilder lineære kontrast ble kjøpt for å måle perfusjon parametere og målrettet mikrobobleutskillere bindende. Vellykket avbildning av mikrobobler i embryoniske blodkar var avhengig av en rekke faktorer, den første er embryo levedyktighet. Alt utstyr og apparatur ble fremstilt på forhånd, for å minimalisere den tid som er nødvendig for isolasjon av embryoer fra livmoren til begynnelsen av injeksjonen. Siden effekten av enkel eller…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Terry Fox Program of the National Cancer Institute of Canada.

Materials

Reagents Company Catalog Number Comments/Description
Antibodies (biotinylated, eBioscience) Antibody choice depends on the experiment
      rat isotype IgG2 control eBioscience 13-4321-85 This antibody/microbubble combination is often required as experimental control 
      biotin anti-mouse CD309 eBioscience 13-5821-85
Biotinylated rat MJ 7/18 antibody to mouse endoglin In house hybridoma Outside antibodies may also be appropriate: we  have used eBioscience (13-1051-85 ) in the past
Distilled water
Embryo media
     500 mL Dulbecco’s Modified Eagle’s Medium with high glucose Sigma D5796
     50 mL Fetal Bovine Serum ATCC 30-2020 lot # 7592456
     Hepes  Gibco 15630 5mL, 1M
     Penicillin-Streptomycin  Gibco 15140-122 5 mL, 10,000 units Pen., 10,000 ug Strep
Ethanol, 70%
Ice
Paraformaldehyde Sigma 76240 4%
Phosphate Buffered Saline [1x]  Sigma D8537 1x, w/o calcium chloride & magnesium chloride
Pregnant mouse, CD-1 Charles River Laboratories Inc. 
0.9% sodium chloride (saline) Hospira 0409-7984-11
Ultrasound contrast agent, target ready and untargeted MicroMarker; VisualSonics Inc.
Ultrasound gel (Aquasonic 100, colourless) CSP Medical 133-1009
Equipment
Cell culture plates (4) :  100×20 mm Fisher Scientific 08-772-22
Cell culture plates (12) : 60×15 mm Sigma D8054
Centrifuge Sorvall Legend RT centrifuge 
Conical tubes, 50 mL BD Falcon VWR 21008-938
Diluent Beckman Coulter Isoton II Diluent, 8448011
Dissection scissors (Wagner) Fine Science Tools Wagner 14068-12
Forceps (2), Dumont SS (0.10×0.06 mm) Fine Science Tools 11200-33
Forceps, splinter VWR 25601-134
Glass beaker, 2 L (Griffin Beaker) VWR 89000-216
Glass capillaries, 1×90 mm GD-1 with filament Narishige GD-1
Glass needle puller Narishige PN-30
Gloves Ansell 4002
Gross anatomy probe Fine Science Tools 10088-15
Hot plate VWR 89090-994
Ice bucket Cole Parmer RK 06274-01
Imaging Platform VisualSonics Inc. Integrated Rail System
Light source, fiber-optic Fisher Scientific 12-562-36 Ideally has adjustable arms
Luers (12), polypropylene barbed female ¼-28 UNF thread Cole Parmer 45500-30
Micro-ultrasound system, high-frequency VisualSonics Inc. Vevo2100
Needles, 21 gauge  (1”) VWR 305165
Particle size analyzer Beckman Coulter Multisizer 3 Coulter Counter
Perforated spoon (Moria) Fine Science Tools MC 17 10373-17
Pins (6), black anodized minutien 0.15 mm Fine Science Tools 26002-15
Pipettors [2-20 uL, 20-200uL, 100-1000uL] Eppendorf Research Plus  adjustable 3120000038;       3120000054;       3120000062
Pipettor tips [2-200uL, 50-1000uL] Eppendorf epT.I.P.S.                   22491334;             022491351
Scissors
Sylgard 184 Silicone Elastomer Kit Dow Corning
Tubing, Tygon laboratory 1/32×3/32” VWR 63010-007
Wooden applicator stick (swab, cotton head) VWR CA89031-270
Surgical microscope 5-8x magnification Fisher Scientific Steromaster
Syringes, 1 mL Normject Fisher 14-817-25
Syringes (10), 30 mL VWR CA64000-041
Syringe infusion pump  Bio-lynx  NE-1000
Thermometer, -20-110oC VWR 89095-598
Timer VWR 33501-418
Tubes, Eppendorf VWR 20170-577
Tube racks (3) VWR 82024-462
Ultrasound transducer, 20 MHz VisualSonics Inc. MS250
Vannas-Tubingen, angled up Fine Science Tools 15005-08

References

  1. Voigt, J. U. Ultrasound molecular imaging. Methods. 48 (2), 92-97 (2009).
  2. Klibanov, A. Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging. Medical Biological Engineering Computing. 47 (8), 875-882 (2009).
  3. Cosgrove, D., Lassau, N. Imaging of perfusion using ultrasound. European Journal Of Nuclear Medicine And Molecular Imaging. 37 (S1), 65 (2010).
  4. Williams, R., et al. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: A proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology. 260 (2), 581 (2011).
  5. Burns, P. N., Wilson, S. R. Focal liver masses: Enhancement patterns on contrast-enhanced Images – Concordance of US scans with CT scans and MR images. Radiology. 242 (1), 162 (2006).
  6. Phoon, C. K. L., Aristizabal, O., Turnbull, D. H. 40 MHz doppler characterization of umbilical and dorsal aortic Blood flow in the early mouse embryo. Ultrasound. In Medicine And Biology. 26 (8), 1275-1283 (2000).
  7. Phoon, C. K. L., Aristizabal, O., Turnbull, D. H. Spatial velocity profile in mouse embryonic aorta and doppler-derived volumetric flow: A preliminary model. Am J Physiol Heart Circ Physiol. 283, H908-H916 (2002).
  8. Aristizábal, O., Williamson, R., Turnbull, D. H. . 12A-4 in vivo 3D contrast-enhanced imaging of the embryonic mouse vasculature. Paper presented at Ultrasonics Symposium. , (2007).
  9. Bartelle, B. B., et al. Novel genetic approach for in vivo vascular imaging in mice. Circ.Res. 110 (7), 938-947 (2012).
  10. Endoh, M., et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Molecular Therapy. 5 (5), 501-508 (2002).
  11. Yamada, M., Hatta, T., Otani, H. Mouse exo utero development system: Protocol and troubleshooting. Congenital Anomalies. 48 (4), 183-187 (2008).
  12. Denbeigh, J. M., Nixon, B. A., Hudson, J. M., Purin, M. C., Foster, F. S. VEGFR2-targeted molecular imaging in the mouse embryo: An alternative to the tumor model. Ultrasound in medicine and biology. 40 (2), 389-399 (2014).
  13. Paauwe, M., Dijke, t. e. n., P, L. J. A. C., Hawinkels, Endoglin for tumor imaging and targeted cancer therapy. Expert Opinion On Therapeutic Targets. 17 (4), 421-435 (2013).
  14. Bourdeau, A., Faughnan, M. E., Letarte, M. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc. Med. 10 (7), 279-285 (2000).
  15. Whiteley, K. J., Adamson, S. L., Pfarrer, C. D. Vascular corrosion casting of the uteroplacental and fetoplacental vasculature in mice. Placenta And Trophoblast: Methods And Protocols. 121 (121), 371-392 (2006).
  16. Kulandavelu, S., et al. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR Journal. 47 (2), 103-10 (2006).
  17. Kalaskar, V. K., Lauderdale, J. D. Mouse embryonic development in a serum-free whole embryo culture system. Journal of Visualized Experiments. 85, (2014).
  18. Willmann, J. K., et al. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. The Journal of Nuclear Medicine. 51 (3), 433-440 (2010).
  19. Deshpande, N., Ren, Y., Foygel, K., Rosenberg, J., Willmann, J. K. Tumor angiogenic marker expression levels during tumor growth: Longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology. 258 (3), 804-811 (2011).
  20. Lyshchik, A., et al. Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. Journal Of Ultrasound In Medicine. 26 (11), 1575-1586 (2007).
  21. Jerkic, M., et al. Endoglin regulates nitric oxide-dependent vasodilatation. The FASEB Journal. 18 (3), 609-611 (2004).
  22. Denbeigh, J. M., Nixon, B. A., Lee, J. J. Y., et al. . Contrast-Enhanced Molecular Ultrasound Differentiates Endoglin Genotypes in Mouse Embryos. , (2014).
  23. Adamson, S. L., Lu, Y., Whiteley, K. J., et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol. 250, 358-35 (2002).
  24. Needles, A., et al. Nonlinear contrast imaging with an array-based micro-ultrasound system. Ultrasound. Medicine Biology. 36 (12), 2097 (2010).
  25. Watson, E. D., Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology. 20 (3), 180-193 (2005).
  26. Shalaby, F., Rossant, J., Yamaguchi, T. P., et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 376, 62-66 (1995).
  27. Kwee, L., Baldwin, H. S., Shen, H. M., et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 121, (1995).
  28. Mercurio, A. M. Lessons from the α2 integrin knockout mouse. The American journal of pathology. , 161-163 (2002).
  29. Hodivala-Dilke, K. αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol. 20, 514-519 (2008).
  30. Pysz, M. A., Gambhir, S. S., Willmann, J. K. Molecular imaging: current status and emerging strategies. Clinical radiology. 65, 500-516 (2010).
  31. Cybulsky, M. I., Iiyama, K., Li, H., et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 107, 1255-1262 (2001).
  32. Xu, H., Gonzalo, J. A., St Pierre, ., Y, , et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med. 180, 95-109 (1994).
  33. Gerwin, N., Gonzalo, J. A., Lloyd, C., et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2-deficient mice results in extended hyperresponsiveness. Immunity. 10, 9-19 (1999).
  34. Johnson, R. C., Mayadas, T. N., Frenette, P. S., et al. Blood cell dynamics in P-selectin-deficient mice. Blood. 86, 1106-1114 (1995).
  35. Corrigan, N., Brazil, D., McAuliffe, F. High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. Reproductive Sciences. 17 (2), 147-14 (2010).
  36. Turnbull, D. H., Bloomfield, T. S., Baldwin, H. S., Foster, F. S., Joyner, A. L. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A. 92, 2239-2243 (1995).
  37. Greco, A., Mancini, M. L., Gargiulo, S., et al. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging. Journal of Biomedicine and Biotechnology. 2012, (2012).
  38. Pysz, M. A., Guracar, I., Foygel, K., Tian, L., Willmann, J. K. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging. Angiogenesis. 15, 433-442 (2012).
  39. Larina, I. V., et al. Live imaging of blood flow in mammalian embryos using doppler swept-source optical coherence tomography. J.Biomed.Opt. 13 (6), 060506-06 (2008).
  40. Garcia, M. D., Udan, R. S., Hadjantonakis, A. K., Dickinson, M. E. . Live imaging of mouse embryos. 4 (4), 104-10 (2011).
  41. Teichert, A., et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis. Commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circulation Research. 103 (1), 24-33 (2008).
  42. Walls, J. R., Coultas, L., Rossant, J., Henkelman, R. M. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One. 3 (8), (2008).
check_url/52520?article_type=t

Play Video

Cite This Article
Denbeigh, J. M., Nixon, B. A., Puri, M. C., Foster, F. S. Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound. J. Vis. Exp. (97), e52520, doi:10.3791/52520 (2015).

View Video