Summary

超声造影成像脊髓血流量的评估实验脊髓损伤

Published: May 07, 2015
doi:

Summary

Contrast Enhanced Ultrasound imaging is a reliable in-vivo tool for quantifying spinal cord blood flow in an experimental rat spinal cord injury model. This paper contains a comprehensive protocol for application of this technique in association with a contusion model of thoracic spinal cord injury.

Abstract

降低脊髓血流量(SCBF)( 缺血)起着外伤性脊髓损伤(SCI)的病理生理关键作用,并进行相应的治疗神经保护的一个重要目标。虽然有几种方法已被描述,以评估SCBF,它们都具有显著局限性。克服后者,我们提出使用实时超声造影成像(CEU)。在这里,我们描述这种技术在脊髓损伤的大鼠模型挫伤的应用程序。甲颈静脉导管,首先注入在重复注射造影剂,六氟化硫包封的微泡氯化钠溶液。脊柱然后稳定与定做的三维帧和脊髓硬膜通过椎板切除术在THIX-ThXII露出。超声波探头然后定位在硬膜(涂有超声凝胶)的后方面。为了评估禁忌基线SCBF,单次静脉注射(400微升)圣剂施加穿过完好脊髓微血管记录其通过。的重降装置随后被用于生成SCI的可重复实验挫伤模型。造影剂重新注入15分钟以下的伤害,以评估后SCI SCBF变化。 CEU允许实时体内的变化SCBF以下脊髓损伤的评估。在未受伤的动物,超声造影显示沿完好的脊髓不均匀血流量。此外,15分钟后SCI,有缺血的关键在震中的水平,而在SCBF较偏远地区的完好保存依然。在相邻的震中(既延髓和尾部)的区域,SCBF被显著降低。这对应于先前描述的“局部缺血半影区”。这个工具是用于评估疗法旨在限制缺血和随后的SCI所产生的组织坏死的影响重大利益的。

Introduction

外伤性脊髓损伤(SCI)是一种破坏性的条件,导致电机显著障碍,感觉和自治职能。迄今为止,还没有治疗已显示出它在患者的效率。对于这样的原因,以确定新的技术,这将提高潜在的治疗方法的评估,并可以进一步阐明损伤pathiophysiology 1是非常重要的。

SCI被分为两个连续的阶段,称为初级和继发性损伤。原发性损伤对应于最初的机械损伤。而继发性损伤团的各种生物事件(如炎症,氧化应激和缺氧)的级联进一步向初始损伤,组织损伤,因此,神经功能缺损2,3的逐渐扩大。

在脊髓损伤的急性期,神经保护疗法旨在减少继发性损伤的病理和sh乌尔德从而提高神经系统的结果。在众多的继发性损伤的事件,缺血起着至关重要的作用4,5。在SCI震中的水平,受损的脑实质微血管阻碍了有效的脊髓血流量(SCBF)。此外,SCBF也显著在围绕损伤震中,具体被称为“局部缺血半影区”的区域中的区域减小。如果SCBF不能迅速这些区域内恢复,局部缺血可导致补充实质坏死和进一步的神经组织损伤。因为即使是轻微的组织保存可以有功能的重大影响,这是主要的兴趣来开发药物和治疗方法,可以减少缺血后SCI。为了突出这一现象,以前的工作表明,只能保存10%髓鞘的轴突就足以使走在猫后SCI 6。

虽然有几种方法已被描述,以评估SCBF,所述Ÿ都有显著的局限性。例如,使用放射性微球7,8-和C14-iodopyrine放射自显影9需要后续动 ​​物牺牲并不能重复在稍后的时间点。氢气清除法10取决于脊柱内电极,其可进一步损伤脊髓的插入。而激光多普勒成像,光电容积描记14,15 和体内光镜16具有测量11-13的一个非常有限的深度/面积。

我们的团队此前曾表明,超声造影(CEU)成像,可用于评估实时体内大鼠脊髓实质17 SCBF变化。要注意的是类似的技术是由Huang 等人施加是很重要的在脊髓18的猪模型。 CEU应用于超声成像的具体方式,它允许灰度形态IM关联年龄的血流19的空间分布(通过常规的B模式获得)。该SCBF成像和定量依赖于血管内注射回声造影剂。造影剂是由六氟化硫微泡(平均直径约2.5微米,90%的具有直径小于6微米)由磷脂稳定。微泡反映从而增强血液回声和组织根据其血流量增大对比度探头发射的超声波束。因此,能够根据反射信号的强度,以评估在感兴趣的特定区域的血液流动。微泡也安全的,他们已经在人类中被临床应用。六氟化硫被快速清除(平均终末半衰期为12分钟)和80%以上的施用六氟化硫被内注射后2分钟回收在呼出的空气。该协议提供了使用IM CEU一个简单的方法老化,以评估在大鼠SCBF变化。

Protocol

注:在本手稿中描述的方法被批准由医学,巴黎,法国(CEEALV / 2011-08-01)的拉里布瓦西埃学院的生物伦理委员会。 1.仪器准备准备和清理的导管插入以下工具:微型镊子,微型剪刀,微细血管钳,剪刀大,手术线(黑色编织丝绸4-0)和地下14导尿管。 Heparinize用肝素溶液(5,000单位/毫升)的导管。 准备和清理的椎板以下工具:剪刀大,手术刀和骨刀。用一个定?…

Representative Results

与上面描述的协议,有可能映射沿纵向脊髓矢状段SCBF。 在完整的脊髓,似乎有实质( 图12)内SCBF不规则性。这可以通过radiculo髓动脉变量分布(RMA)的从一个动物进行说明到另一个。 RMA指节段性即到达脊髓前动脉(ASA),因此提供血液供应脊髓实质内动脉。与此相反,根性动脉对应节段性动脉,这没有达到ASA和因此不提供脊髓血液供应。因此,在脊髓节段所在?…

Discussion

尽管我们已经描述了如何使用CEU在大鼠脊髓挫伤模型,该协议可以被修改,以适应其他的实验的目标或SCI模型。我们选择(损伤,15分钟后的SCI之前)来衡量SCBF只在两个时间点,然而时间点的数目和SCBF测量之间的延迟可以适于满足其他研究的需要。例如,在我们以前的工作如图17所示 ,我们已经测量SCBF在五个连续的时间点在整个第一小时后的SCI。值得注意的是,假手术组(无SCI)中,我…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We acknowledge Stephanie Gorgeard, Thierry Scheerlink (Toshiba France), and Christophe Lazare (Bracco France).

Materials

Name of Reagent/ Equipment Company Comments/Description
External Fixator Hoffman 3 Stryker, Kalamazoo, USA Modular system used to build the custom made 3D frame and the jointed arm holding the ultrasound probe
Toshiba Applio Toshiba, Tokyo, Japan Ultrasound machine
Sonovue Bracco, Milan, Italy Contrast agent : microbubbles
Vueject pump Bracco, Milan, Italy Electric pump for infusion of microbubbles bolus
Aquasonic Ultrasound Gel Parker Laboratories, Fairfield, NJ, USA Ultrasound gel used to transmit the ultrasound waves
Isovet Piramal Healthcare, Mumbai, India Isoflurane used for anesthesia
Ultra Extend Toshiba, Tokyo, Japan Software used for quantification of spinal cord blood flow
Mastercraft Five-piece Mini-pliers Set, Product #58-4788-6 Canadian Tire, Toronto, Canada Set of pliers for Do-it-yourself job

References

  1. Cadotte, D. W., Fehlings, M. G. Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res. 469 (3), 732-741 (2011).
  2. Beattie, M. S., Farooqui, A. A., Bresnahan, J. C. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 17 (10), 915-925 (2000).
  3. MacDonald, J. W., Sadowsky, C. Spinal-cord injury. Lancet. 359 (9304), 417-425 (2002).
  4. Mautes, A. E., Weinzierl, M. R., Donovan, F., Noble, L. J. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 80 (7), 673-687 (2000).
  5. Martirosyan, N. L., et al. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine. 15 (3), 238-251 (2011).
  6. Blight, A. R. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience. 10 (2), 521-543 (1983).
  7. Bassingthwaighte, J. B., et al. Validity of microsphere depositions for regional myocardial flows. Am J Physiol. 253 (1 Pt 2), H184-H193 (1987).
  8. Drescher, W. R., Weigert, K. P., Bunger, M. H., Hansen, E. S., Bunger, C. E. Spinal blood flow in 24-hour megadose glucocorticoid treatment in awake pigs. J Neurosurg. 99 (3 Suppl), 286-290 (2003).
  9. Golanov, E. V., Reis, D. J. Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat. J Physiol. 495 (Pt 1), 201-216 (1996).
  10. Ueda, Y., et al. Influence on spinal cord blood flow and function by interruption of bilateral segmental arteries at up to three levels: experimental study in dogs). Spine (Phila Pa 1976). 30 (20), 2239-2243 (2005).
  11. Carlson, G. D., et al. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials). J Bone Joint Surg Am. 85-A (1), 95-101 (2003).
  12. Hamamoto, Y., Ogata, T., Morino, T., Hino, M., Yamamoto, H. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury. Spine (Phila Pa 1976). 32 (18), 1955-1962 (2007).
  13. Horn, E. M., et al. The effects of intrathecal hypotension on tissue perfusion and pathophysiological outcome after acute spinal cord injury). Neurosurg Focus. 25 (5), E12 (2008).
  14. Phillips, J. P., George, K. J., Kyriacou, P. A., Langford, R. M. Investigation of photoplethysmographic changes using a static compression model of spinal cord injury. Conf Proc IEEE Eng Med Biol Soc. 2009, 1493-1496 (2009).
  15. Phillips, J. P., George, K. J., Kyriacou, P. A., Langford, R. M. Investigation of photoplethysmographic changes using a static compression model of spinal cord injury. Conf Proc IEEE Eng Med Biol Soc. 2009, 1493-1496 (2009).
  16. Ishikawa, M., et al. Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows. J Neurol Sci. 194 (1), 59-69 (2002).
  17. Soubeyrand, M., et al. Real-time and spatial quantification using contrast-enhanced ultrasonography of spinal cord perfusion during experimental spinal cord injury. Spine (Phila Pa 1976). 37 (22), E1376-E1382 (1976).
  18. Huang, L., et al. Quantitative assessment of spinal cord perfusion by using contrast-enhanced ultrasound in a porcine model with acute spinal cord contusion). Spinal Cord. 51 (3), 196-201 (2012).
  19. Postema, M., Gilja, O. H. Contrast-enhanced and targeted ultrasound. World J Gastroenterol. 17 (1), 28-41 (2011).
  20. Soubeyrand, M., Badner, A., Vawda, R., Chung, Y. S., Fehlings, M. Very High Resolution Ultrasound Imaging for Real-Time Quantitative Visualisation of Vascular Disruption After Spinal Cord Injury. J Neurotrauma. , (2014).
  21. Akhtar, A. Z., Pippin, J. J., Sandusky, C. B. Animal models in spinal cord injury: a review. Rev Neurosci. 19 (1), 47-60 (2008).

Play Video

Cite This Article
Dubory, A., Laemmel, E., Badner, A., Duranteau, J., Vicaut, E., Court, C., Soubeyrand, M. Contrast Enhanced Ultrasound Imaging for Assessment of Spinal Cord Blood Flow in Experimental Spinal Cord Injury. J. Vis. Exp. (99), e52536, doi:10.3791/52536 (2015).

View Video