Summary

Generasjon av lymfatisk Mikropartikler og Påvisning av deres proapoptotiske Effekt på Airway Epitelceller

Published: February 20, 2015
doi:

Summary

Cellemembranen-skur mikropartikler (MPS) er aktive biologiske vesikler som kan isoleres og deres patofysiologiske effekter undersøkt i ulike modeller. Her beskriver vi en fremgangsmåte for å generere MP'er avledet fra T-lymfocytter (LMPs), og for å demonstrere deres proapoptotiske effekt på luftveis epitelceller.

Abstract

Interessen for de biologiske roller cellemembranen-avledet vesikler i celle-celle kommunikasjon har økt de siste årene. Mikropartikler (MPS) er en slik type vesikler, som varierer i diameter fra 0,1 pm til 1 pm, og vanligvis skur fra plasmamembranen av eukaryote celler som gjennomgår apoptose eller aktivering. Her beskriver vi generering av T-lymfocytt-avledede mikropartikler (LMPs) fra apoptotiske CEM T-celler stimulert med actinomycin D. LMPs isoleres gjennom en flertrinnsprosess differensialsentrifugering og karakterisert ved hjelp av flow cytometri. Denne protokollen presenterer også en in situ celledød deteksjonsmetode for å demonstrere apoptosiske effekten av LMPs på bronkial epitelceller som stammer fra mus primære luftveis bronkial vev explants. Fremgangsmåtene beskrevet heri tilveiebringe en reproduserbar fremgangsmåte for isolering av rikelig mengder LMPs fra apoptotiske lymfocytter in vitro. LMPs avledetpå denne måte kan brukes til å evaluere egenskapene til forskjellige sykdomsmodeller, og for farmakologi og toksikologi testing. Bruken av bronkial vev eksplantater fremfor immortaliserte epiteliale cellelinjer gitt at luftveisepitel har en beskyttende fysiske og funksjonelle barriere mellom det ytre miljø og det underliggende vev, gir en effektiv modell for undersøkelser som krever luftveiskanalen vev.

Introduction

Microparticles (MPs) are biologically active submicron membrane vesicles released following cell activation or apoptosis. MPs are derived from both healthy and damaged cells and are implicated in many physiological and pathological processes.1 MPs have been detected not only in human plasma, but also in inflammatory and apoptotic tissue. The biological utility of cell membrane–derived MPs has been demonstrated in various settings, including cell signalling models and as pharmacological tools.2,3 We previously demonstrated that LMPs derived from T lymphocytes following actinomycin D stimulation (to induce apoptosis) suppress angiogenesis and inhibit endothelial cell survival and proliferation.4,5 The antiangiogenic effects of LMPs may vary significantly depending on the stimuli used to activate T lymphocytes in vitro.6

The airway epithelium functions as a protective physical and functional barrier. Increased numbers of T lymphocytes in the airway can contribute to cell damage and airway inflammation.7 We have shown that LMPs induce apoptosis of human bronchial epithelial cells,8 which indicated LMPs may change barrier function of bronchial epithelium in vivo. Apoptotic cells can be identified using the TUNEL method, which detects in situ DNA fragmentation.

The overall goal of this protocol is to illustrate the in vitro production of LMPs from a T lymphocyte cell line, and to demonstrate their proapoptotic effect on airway epithelial cells. In situ cell death detection demonstrated that LMPs strongly induce airway bronchial epithelial cell death, suggesting that LMPs-mediated injury to the airway epithelium may impact barrier function of the damaged epithelium.

Protocol

MERK: Mann C57BL / 6 mus (5-7 uker gammel) er fra Charles River Laboratories International, Inc. (St-Constant, Quebec, Canada.) Og manipulert i henhold til protokoller godkjent av CHU Sainte-Justine Animal Care komiteen. Mus bronkial vev explants gi en god kilde til primær bronkial epitelceller for å undersøke apoptosiske effekter LMPs på epitelceller. Denne protokollen beskriver in vitro-dannelse av LMPs, så vel som en fremgangsmåte for påvisning av apoptotiske epitelceller på LMPs-behandlede bronkiale…

Representative Results

LMPs var preget med annexin V farging 10 av fluorescens-aktivert celle sortering (FACS) analyse og gated bruker en mikrometer perler der 97% av parlamentsmedlemmer (≤1 mikrometer) ble annexin-V-Cy5 positive (figur 1A og 1B). Vanligvis ble omtrent 2,5 mg LMPs oppnådd etter denne protokollen. Bronkial vev explants fra C57BL / 6 mus ble utsatt for kjøretøy og LMPs behandling. Histopatologisk analyse av bronkial seksjoner viste effekten av LMPs på den strukturelle integritet av det bronkial…

Discussion

Parlamentsmedlemmer er aktive formidlere av interkrysstale og deres studie er lovende i mange områder av vitenskap. 11 Denne studien presentert en detaljert protokoll for in vitro storskala generasjon LMPs avledet fra en apoptotisk T cellelinje. Disse parlamentsmedlemmer uttrykker et stort repertoar av lymfocytt molekyler og er biologisk innblandet i reguleringen av mobilnettet og vev homeostase. Imidlertid kan LMPs avledet fra forskjellige kilder være biologisk forskjellig. 4,9,12,13 </…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbeidet er støttet med tilskudd fra den kanadiske Institutes of Health Research (178 918), Fonds de recherche no santé du Québec – Vision Health Research Network.

Materials

LMPs production and characterization
CEM T cells  ATCC  CCL-119
X-VIVO 15 medium  Cambrex, Walkersville 04-744Q
Flask T75 Sarstedt 83.1813.502
Flask T175 Sarstedt 83.1812.502
Actinomycin D  Sigma Chemical Co. A9415-2mg
PBS Lifetechnologies 14190-144
0.22µm filter Sarstedt 83.1826.001
Annexin-VCy5 BD Pharmagen  559933
FACS flow solution BD Bio-sciences 342003
Fluorescent microbeads (1 um) Molecular Probes  T8880
Polysterene counting beads (7 um) Bangs laboratories PS06N/6994
Polypropylene FACS tubes Falcon 352058
1 ml pipet Fisher 13-678-11B
5 ml pipet Falcon 357543
25 ml pipet Ultident DL-357551
1,5 ml conical polypropylene micro tube Sarstedt 72.690
15 ml conical polypropylene tube Sarstedt 62.554.205
50 ml conical polypropylene tube Sarstedt 62.547.205
50 ml high speed polypropylene copolymer tube Nalgene 3119-0050
250 ml high speed polypropylene bottle Beckman 356011
Protein assay (Bradford assay) Bio-Rad Laboratories 500-0006
Protein assay standard II Bio-Rad Laboratories 500-0007
Test tube 16×100 VWR 47729-576
Test tube 12×75 Ultident 170-14100005B
Cell incubator  Mandel Heracell 150
Low speed centrifuge IEC Centra8R
High speed centrifuge Beckman Avanti J8
High speed rotor for 250ml bottle Beckman JLA16.250
High speed rotor for 50ml tube Beckman JA30.50
Fow cytometry  BD Bio-sciences FACS Calibur
Spectrophotometer Beckman Series 600
Bronchial tissue explants and sections 
C57BL/6 mice (5-7 weeks old)   Charles River Laboratories, Inc. 
Mouse Airway PrimaCell™ System: CHI Scientific, Inc. 2-82001
 Rib-Back Carbon Steel Scalpel Blades Becton Dickinson AcuteCare 371310 #10
Scalpel Handle Fine Science Tools Inc.  10003-12 #7
phase-contrast inverted microscope Olympus Optical CO., LTD.    CK2
high O2 gas mixture  VitalAire Canada Inc.
modular incubator chamber Billups-Rothenberg Inc. MIC-101
MaxQ 4000 incubated orbital shaker Barnstead Lab-Line,  SHKA4000-7
12-well tissue culture plate Becton Dickinson and Company 353043
Plastic tissue culture dishes (100 mm) Sarstedt, Inc. 83.1802
Surgical scissors Fine Science Tools Inc.  14060-09 Straight, sharp, 9cm longth
Half-curved Graefe forceps Fine Science Tools Inc.  11052-10
humidified CO2 incubator Mandel Scientific Company Inc.  SVH-51023421
 Histopathological examination 
formalin formaldehyde Sigma-Aldrich, Inc.  HT5011
paraffin Fisher scientific  International, Inc. T555
ethyl alcohol Merck KGaA, Darmstadt EX0278-1
 glutaraldehyde  Sigma-Aldrich, Inc.  G6403
Cacodylate Sigma-Aldrich, Inc.  31533
microscope slides VWR Scientific Inc.  48300-025 25x75mm
Xylene Fisher scientific  International, Inc. X5-4
Mayer's hematoxylin Sigma-Aldrich, Inc.  MHS16 Funnel with filter paper  
HCl  Fisher scientific  International, Inc.   A144s-500
eosin  Sigma-Aldrich, Inc.  HT110116 Funnel with filter paper  
Permount™ Mounting Medium Thermo Fisher Scientific Inc.  SP15-100
glass coverslip surgipath medical industries, Inc. 84503 24×24 #1 
TUNEL detection kit In Situ Cell Death Detection, POD 11 684 817 910
oven Despatch Industries Inc. LEB-1-20
rotary Microtome Leica Microsystems Inc. RM2145
filter paper Whatman International Ltd. 1003150 #3
Microscope Nikon Imaging Japan Inc. E800
staining dish complete Wheaton Industries, Inc. 900200 including dish, rack, cover
1.5 ml eppendorf tube Sarstedt Inc.  72.69 39x10mm
Orbital and Reciprocating Water Bath ExpotechUSA ORS200
phosphate buffered saline   GIBCO 14190-144
fume hood Nicram RD Service 3707E

References

  1. Tushuizen, M. E., Diamant, M., Sturk, A., Nieuwland, R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe. Arterioscler Thromb Vasc Biol. 31 (1), 4-9 (2011).
  2. Martinez, M. C., Tual-Chalot, S., Leonetti, D., Andriantsitohaina, R. Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci. 32 (11), 659-665 (2011).
  3. Benameur, T., Andriantsitohaina, R., Martinez, M. C. Therapeutic potential of plasma membrane-derived microparticles. Pharmacol Rep. 61 (1), 49-57 (2009).
  4. Yang, C., et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol. 294 (2), 467-476 (2008).
  5. Yang, C., Gagnon, C., Hou, X., Hardy, P. Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther. 10 (5), 448-456 (2010).
  6. Angelillo-Scherrer, A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res. 110 (2), 356-369 (2012).
  7. Maeno, T., et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 178 (12), 8090-8096 (2007).
  8. Qiu, Q., Xiong, W., Yang, C., Gagnon, C., Hardy, P. Lymphocyte-derived microparticles induce bronchial epithelial cells’ pro-inflammatory cytokine production and apoptosis. Mol Immunol. 55 (3-4), 220-230 (2013).
  9. Martin, S., et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation. 109 (13), 1653-1659 (2004).
  10. Shet, A. S., et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 102 (7), 2678-2683 (2003).
  11. Mause, S. F., Weber, C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 107 (9), 1047-1057 (2010).
  12. Yang, C., et al. Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific. J Extracell Vesicles. 3, (2014).
  13. Soleti, R., et al. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis. 30 (4), 580-588 (2009).
check_url/52651?article_type=t

Play Video

Cite This Article
Yang, C., Xiong, W., Qiu, Q., Tahiri, H., Gagnon, C., Liu, G., Hardy, P. Generation of Lymphocytic Microparticles and Detection of their Proapoptotic Effect on Airway Epithelial Cells. J. Vis. Exp. (96), e52651, doi:10.3791/52651 (2015).

View Video