Summary

Transformación biolística de un fluorescente Tagged gen en el oportunista por hongos patógenos<em> Cryptococcus neoformans</em

Published: March 19, 2015
doi:

Summary

Transformación biolística es un método utilizado para generar la integración estable de ADN en el genoma de los oportunistas neoformans patógeno Cryptococcus través de la recombinación homóloga. Vamos a demostrar la transformación biolística de una construcción, que tiene el gen que codifica acetato quinasa fusionado a la mCherry etiqueta fluorescente en C. neoformans.

Abstract

El basidiomycete Cryptococcus neoformans, un patógeno oportunista invasivo del sistema nervioso central, es la causa más frecuente de meningitis fúngica en todo el mundo como resultado más de 625.000 muertes al año en todo el mundo. Aunque la electroporación se ha desarrollado para la transformación de los plásmidos en Cryptococcus, sólo entrega biolística proporciona un medio eficaz para transformar ADN lineal que se puede integrar en el genoma por recombinación homóloga.

Acetato ha demostrado ser un importante producto de fermentación durante la infección criptocócica, pero la importancia de esto todavía no se conoce. Una vía bacteriana integrada por los enzimas xilulosa-5-fosfato / fructosa-6-fosfato fosfocetolasa (Xfp) y acetato quinasa (ACK) es una de las tres vías posibles para la producción de acetato en C. neoformans. Aquí, nos demuestran la transformación biolística de una construcción,que tiene el gen que codifica Ack fusionado a la etiqueta fluorescente mCherry, en C. neoformans. Entonces Confirmamos integración de la fusión ACK -mCherry en el locus ACK.

Introduction

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per year worldwide 1. Acetate has been shown to be a major fermentation product during cryptococcal infection 2,3,4, and genes encoding enzymes from three putative acetate-producing pathways have been shown to be upregulated during infection 5. This suggests that acetate production and transport may be a necessary and required part of the pathogenic process; however, the significance of this is not yet understood. One possible pathway for acetate production is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) – acetate kinase (Ack), a pathway previously thought to be present only in bacteria but recently identified in both euascomycete as well as basidiomycete fungi, including C. neoformans 6.

To determine the localization of these enzymes of this pathway in the cell, a construct carrying a neomycin resistance gene downstream of an ACK gene fusion to the fluorescent tag mCherry (ACK:mCherry:Neo) will be introduced into C. neoformans using the well-established method of biolistic transformation 7,8. Although electroporation is an efficient method for transformation of plasmids that will be maintained as episomes into Cryptococcus 9, it is not useful in creating stable homologous transformants 8. Only biolistic delivery using a gene gun provides an effective means to transform linear DNAs that will be integrated into the genome by homologous recombination. For example, Edman et al. showed that of the transformants resulting from electroporation of a plasmid-borne URA5 selectable marker into C. neoformansura5 mutants, just 0.001 to 0.1% of transformants were stable 9. Chang et al. achieved just a 0.25% stable transformation efficiency using electroporation to reconstitute capsule production in an acapsular mutant 10. Unlike electroporation, biolistic transformation has been shown to result in stable transformation efficiency of 2-50% depending on the gene that is being altered 7,8,11.

This visual experiment will provide a step-by-step demonstration of biolistic transformation of the linear ACK:mCherry:Neo DNA construct into C. neoformans, and will describe how to confirm its proper integration via homologous recombination into the ack locus. The protocol demonstrated here is a modification of the method developed in the Perfect laboratory 8.

Protocol

NOTA: El esquema general de este protocolo se describe en la Figura 1. 1. C. Preparación neoformans Para cada reacción de transformación, creciendo un 2-3 ml O / N cultura de C. neoformans en medio YPD a 30 ° C con agitación a 250 rpm. Centrifugar el cultivo O / N durante 5 min a 900 xg a 10 ° C y descartar el sobrenadante. Resuspender cada sedimento de células en 300 l de peptona de levadura dextrosa (YPD) med…

Representative Results

Una transformación biolística exitosa de C. neoformans se pueden obtener siguiendo este esquema de protocolo (Figura 1). Con la transformación biolística, una sesión con éxito de las perlas de oro recubiertas se indica mediante un anillo de oro visible en la placa después de la DNA es disparo (Figura 2A). Las colonias deben aparecer dentro de 4 a 5 días cuando se deja a temperatura ambiente después de la siembra las células recuperadas de las placas de sorbitol YPD + …

Discussion

Utilizing this protocol, biolistic transformation can be accomplished in which linear DNA is integrated into a desired locus in the Cryptococcus neoformans genome by homologous recombination. Certain steps in the protocol can have a dramatic effect on the effectiveness/efficiency of the transformation. For a successful transformation, it is imperative that the DNA utilized in the shoot has a concentration of at least 1 µg. However, the volume of DNA added to the gold beads can be increased in the chance the…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue apoyado por los premios de la Fundación Nacional de Ciencia (Premio # 0920274) y el Experimento de Carolina del Sur Estación Proyecto SC-1700340. Este papel isTechnical Contribución No. 6283 de la Estación Experimental de la Universidad de Clemson. Los autores agradecen al Dr. Lukasz Kozubowski por su útil asesoramiento en el desarrollo de este protocolo final y el Dr. Cheryl Ingram-Smith, Katie Glenn, y Grace Kisirkoi por su lectura crítica del manuscrito.

Materials

Product Company Catalog # Website
0.6 μm gold beads Bio-Rad 165-2262 http://www.bio-rad.com
Spermadine-free base Sigma- Aldrich S0266 https://www.sigmaaldrich.com
G418 – Sulfate (Neomycin) Gold Biotechnology G-418-10 www.goldbio.com
Hygromycin Gold Biotechnology H-270-1 www.goldbio.com
1350 psi Rupture Discs Bio-Rad 165-2330 http://www.bio-rad.com
Stopping Screens Bio-Rad 165-2336 http://www.bio-rad.com
Macrocarriers discs Bio-Rad 165-2335 http://www.bio-rad.com
YPD Broth Becton Dickinson & Co. 242820 www.bd.com
Agar Becton Dickinson & Co. 214530 www.bd.com
Sorbitol Fisher Scientific BP439 http://www.fishersci.com
PDS-1000/He System Bio-Rad 165-2257 http://www.bio-rad.com
Microscope Zeiss Axio http://www.zeiss.com/microscopy
KOD One Step PCR Kit EMD Millipore 71086-4 http://www.emdmillipore.com
One Step RT-PCR Kit Qiagen 210212 www.qiagen.com
Wizard Genomic DNA Purification Kit Promega A1120 www.promega.com
RNeasy Mini Kit Qiagen 74104 www.qiagen.com
Mini Beadbeater – 1 BioSpecs 3110BX http://www.biospec.com
Microfuge 18 Centrifuge Beckman Coulter F241.5P www.beckmancoulter.com
Microplate Spectrophotometer BioTek EPOCH www.biotek.com

References

  1. Price, M. S., et al. Cryptococcusneoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio. 2, e00103-e00111 (2011).
  2. Bubb, W. A., et al. Heteronuclear NMR studies of metabolites produced by Cryptococcusneoformans in culture media: identification of possible virulence factors. Magn Reson Med. 42, 442-453 (1999).
  3. Himmelreich, U., et al. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 5, 285-290 (2003).
  4. Wright, L., et al. Metabolites released by Cryptococcusneoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microbes Infect. 4, 1427-1438 (2002).
  5. Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R., Kronstad, J. W. Metabolic adaptation in Cryptococcusneoformans during early murine pulmonary infection. Mol Microbiol. 69, 1456-1475 (2008).
  6. Ingram-Smith, C., Martin, S. R., Smith, K. S. Acetate kinase: not just a bacterial enzyme. Trends Microbiol. 14, 249-253 (2006).
  7. Davidson, R. C., et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol: FG & B. 29, 38-48 (2000).
  8. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T., Perfect, J. R. Gene transfer in Cryptococcusneoformans by use of biolistic delivery of DNA. J. Bacteriol. 175, 1405-1411 (1993).
  9. Edman, J. C., Kwon-Chung, K. J. Isolation of the URA5 gene from Cryptococcusneoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 10, 4538-4544 (1990).
  10. Chang, Y. C., Kwon-Chung, K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 14, 4912-4919 (1994).
  11. Del Poeta, M., et al. Topoisomerase I is essential in Cryptococcusneoformans: role In pathobiology and as an antifungal target. Genetics. 152, 167-178 (1999).
  12. McClelland, C. M., Chang, Y. C., Kwon-Chung, K. J. High frequency transformation of Cryptococcusneoformans and Cryptococcusgattii by Agrobacteriumtumefaciens. Fungal Genet Biol:FG & B. 42, 904-913 (2005).
  13. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., Lichtman, J. W. Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron. 27, 219-225 (2000).
  14. Nicola, A. M., Frases, S., Casadevall, A. Lipophilic dye staining of Cryptococcusneoformans extracellular vesicles and capsule. Eukaryot Cell. 8, 1373-1380 (2009).
check_url/52666?article_type=t

Play Video

Cite This Article
Taylor, T., Bose, I., Luckie, T., Smith, K. Biolistic Transformation of a Fluorescent Tagged Gene into the Opportunistic Fungal Pathogen Cryptococcus neoformans. J. Vis. Exp. (97), e52666, doi:10.3791/52666 (2015).

View Video