Summary

Biolistisk Transformation av en fluorescerande taggade gen i Opportunistic svamppatogen<em> Cryptococcus neoformans</em

Published: March 19, 2015
doi:

Summary

Biolistisk omvandling är en metod som används för att generera en stabil integrering av DNA i genomet hos de opportunistiska patogenen Cryptococcus neoformans genom homolog rekombination. Vi kommer att visa biolistisk transformation av en konstruktion, som har den gen som kodar acetatkinas smält till den fluorescerande taggen mCherry in C. neoformans.

Abstract

Den basidiomycet Cryptococcus neoformans, en invasiv opportunistisk patogen av det centrala nervsystemet, är den vanligaste orsaken till svampmeningit globalt ledde till mer än 625.000 dödsfall per år i hela världen. Även elektroporering har utvecklats för omvandlingen av plasmider i Cryptococcus, ger bara biolistisk leverans ett effektivt medel för att omvandla linjära DNA som kan integreras i genomet genom homolog rekombination.

Acetat har visat sig vara en stor jäsningsprodukt under krypto infektion, men betydelsen av detta är ännu inte känt. En bakteriell väg bestående av enzymerna xylulos-5-fosfat / fruktos-6-fosfat phosphoketolase (Xfp) och acetatkinas (ACK) är en av tre möjliga vägar för acetat produktion i C. neoformans. Här visar vi den biolistiska transformationen av en konstruktion,som har den gen som kodar Ack fuserad till den fluorescerande taggen mCherry, in C. neoformans. Vi bekräfta sedan integrationen av ACK -mCherry fusion i ACK locus.

Introduction

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per year worldwide 1. Acetate has been shown to be a major fermentation product during cryptococcal infection 2,3,4, and genes encoding enzymes from three putative acetate-producing pathways have been shown to be upregulated during infection 5. This suggests that acetate production and transport may be a necessary and required part of the pathogenic process; however, the significance of this is not yet understood. One possible pathway for acetate production is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) – acetate kinase (Ack), a pathway previously thought to be present only in bacteria but recently identified in both euascomycete as well as basidiomycete fungi, including C. neoformans 6.

To determine the localization of these enzymes of this pathway in the cell, a construct carrying a neomycin resistance gene downstream of an ACK gene fusion to the fluorescent tag mCherry (ACK:mCherry:Neo) will be introduced into C. neoformans using the well-established method of biolistic transformation 7,8. Although electroporation is an efficient method for transformation of plasmids that will be maintained as episomes into Cryptococcus 9, it is not useful in creating stable homologous transformants 8. Only biolistic delivery using a gene gun provides an effective means to transform linear DNAs that will be integrated into the genome by homologous recombination. For example, Edman et al. showed that of the transformants resulting from electroporation of a plasmid-borne URA5 selectable marker into C. neoformansura5 mutants, just 0.001 to 0.1% of transformants were stable 9. Chang et al. achieved just a 0.25% stable transformation efficiency using electroporation to reconstitute capsule production in an acapsular mutant 10. Unlike electroporation, biolistic transformation has been shown to result in stable transformation efficiency of 2-50% depending on the gene that is being altered 7,8,11.

This visual experiment will provide a step-by-step demonstration of biolistic transformation of the linear ACK:mCherry:Neo DNA construct into C. neoformans, and will describe how to confirm its proper integration via homologous recombination into the ack locus. The protocol demonstrated here is a modification of the method developed in the Perfect laboratory 8.

Protocol

OBS: Det övergripande system av det här protokollet beskrivs i figur 1. 1. C. neoformans Framställning För varje transformationsreaktion, växa en 2-3 ml O / N-kulturen av C. neoformans i YPD-medium vid 30 ° C under skakning vid 250 rpm. Centrifugera O / N-kulturen under 5 min vid 900 xg vid 10 ° C och kasta bort supernatanten. Resuspendera varje cell pelleten i 300 pl jäst, pepton dextros (YPD) medium. Använ…

Representative Results

En framgångsrik biolistisk omvandlingen av C. neoformans kan erhållas genom att följa detta protokoll schema (figur 1). Med biolistisk transformation är en framgångsrik skjuta av de belagda guldpärlor indikeras av en guldring synlig på plattan efter DNA är skjuten (Figur 2A). Kolonier bör visas inom 4 till 5 dagar när de lämnas i rumstemperatur efter plätering de återvunna cellerna från YPD + 1M sorbitol plattor på selektiva medier. Transforming 2 ig DNA bör res…

Discussion

Utilizing this protocol, biolistic transformation can be accomplished in which linear DNA is integrated into a desired locus in the Cryptococcus neoformans genome by homologous recombination. Certain steps in the protocol can have a dramatic effect on the effectiveness/efficiency of the transformation. For a successful transformation, it is imperative that the DNA utilized in the shoot has a concentration of at least 1 µg. However, the volume of DNA added to the gold beads can be increased in the chance the…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Detta arbete stöddes av utmärkelser från National Science Foundation (Award # 0.920.274) och South Carolina Experiment Station Project SC-1.700.340. Denna uppsats isTechnical bidrag nr 6283 i Clemson University Experiment Station. Författarna tackar Dr Lukasz Kozubowski för hans goda råd i utvecklingen av denna slutliga protokollet och Dr. Cheryl Ingram-Smith, Katie Glenn, och Grace Kisirkoi för deras kritisk läsning av manuskriptet.

Materials

Product Company Catalog # Website
0.6 μm gold beads Bio-Rad 165-2262 http://www.bio-rad.com
Spermadine-free base Sigma- Aldrich S0266 https://www.sigmaaldrich.com
G418 – Sulfate (Neomycin) Gold Biotechnology G-418-10 www.goldbio.com
Hygromycin Gold Biotechnology H-270-1 www.goldbio.com
1350 psi Rupture Discs Bio-Rad 165-2330 http://www.bio-rad.com
Stopping Screens Bio-Rad 165-2336 http://www.bio-rad.com
Macrocarriers discs Bio-Rad 165-2335 http://www.bio-rad.com
YPD Broth Becton Dickinson & Co. 242820 www.bd.com
Agar Becton Dickinson & Co. 214530 www.bd.com
Sorbitol Fisher Scientific BP439 http://www.fishersci.com
PDS-1000/He System Bio-Rad 165-2257 http://www.bio-rad.com
Microscope Zeiss Axio http://www.zeiss.com/microscopy
KOD One Step PCR Kit EMD Millipore 71086-4 http://www.emdmillipore.com
One Step RT-PCR Kit Qiagen 210212 www.qiagen.com
Wizard Genomic DNA Purification Kit Promega A1120 www.promega.com
RNeasy Mini Kit Qiagen 74104 www.qiagen.com
Mini Beadbeater – 1 BioSpecs 3110BX http://www.biospec.com
Microfuge 18 Centrifuge Beckman Coulter F241.5P www.beckmancoulter.com
Microplate Spectrophotometer BioTek EPOCH www.biotek.com

References

  1. Price, M. S., et al. Cryptococcusneoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio. 2, e00103-e00111 (2011).
  2. Bubb, W. A., et al. Heteronuclear NMR studies of metabolites produced by Cryptococcusneoformans in culture media: identification of possible virulence factors. Magn Reson Med. 42, 442-453 (1999).
  3. Himmelreich, U., et al. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 5, 285-290 (2003).
  4. Wright, L., et al. Metabolites released by Cryptococcusneoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microbes Infect. 4, 1427-1438 (2002).
  5. Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R., Kronstad, J. W. Metabolic adaptation in Cryptococcusneoformans during early murine pulmonary infection. Mol Microbiol. 69, 1456-1475 (2008).
  6. Ingram-Smith, C., Martin, S. R., Smith, K. S. Acetate kinase: not just a bacterial enzyme. Trends Microbiol. 14, 249-253 (2006).
  7. Davidson, R. C., et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol: FG & B. 29, 38-48 (2000).
  8. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T., Perfect, J. R. Gene transfer in Cryptococcusneoformans by use of biolistic delivery of DNA. J. Bacteriol. 175, 1405-1411 (1993).
  9. Edman, J. C., Kwon-Chung, K. J. Isolation of the URA5 gene from Cryptococcusneoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 10, 4538-4544 (1990).
  10. Chang, Y. C., Kwon-Chung, K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 14, 4912-4919 (1994).
  11. Del Poeta, M., et al. Topoisomerase I is essential in Cryptococcusneoformans: role In pathobiology and as an antifungal target. Genetics. 152, 167-178 (1999).
  12. McClelland, C. M., Chang, Y. C., Kwon-Chung, K. J. High frequency transformation of Cryptococcusneoformans and Cryptococcusgattii by Agrobacteriumtumefaciens. Fungal Genet Biol:FG & B. 42, 904-913 (2005).
  13. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., Lichtman, J. W. Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron. 27, 219-225 (2000).
  14. Nicola, A. M., Frases, S., Casadevall, A. Lipophilic dye staining of Cryptococcusneoformans extracellular vesicles and capsule. Eukaryot Cell. 8, 1373-1380 (2009).
check_url/52666?article_type=t

Play Video

Cite This Article
Taylor, T., Bose, I., Luckie, T., Smith, K. Biolistic Transformation of a Fluorescent Tagged Gene into the Opportunistic Fungal Pathogen Cryptococcus neoformans. J. Vis. Exp. (97), e52666, doi:10.3791/52666 (2015).

View Video