Summary

单通道分析和钙成像在新鲜分离的肾小球足细胞

Published: June 27, 2015
doi:

Summary

Changes in the intracellular calcium levels in the podocytes are one of the most important means to control the filtration function of glomeruli. Here we explain a high-throughput approach that allows detection of real-time calcium handling and single ion channels activity in the podocytes of the freshly isolated glomeruli.

Abstract

Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.

Introduction

肾脏维持自我平衡各种物质和的方式,确定总血压调节血容量。干扰在肾过滤,重吸收或分泌导致或伴随的病理状态,从高血糖或低血压结束末期肾病,最终需要肾移植。肾过滤单元(肾小球)由三层-毛细血管内皮,基底膜和上皮细胞的单细胞层-足细胞,从而起到的狭缝隔膜的完整性和功能1的维持起主要作用。功能障碍的选择性渗透肾小球过滤导致大分子,​​如蛋白的尿中丢失。各种试剂可以影响足细胞和它们的足突,这确定肾小球滤过屏障的完整性的结构。

足细胞都参与了格莱姆教授的维护eruli过​​滤功能。它已经确定,不当钙处理由足细胞导致细胞损伤和起着各种形式肾病2,3的发展中起重要作用。因此,一个模型,允许对细胞内钙离子浓度的变化直接测量将有助于对足细胞功能研究的发展。孤立肾小球在许多研究,包括白蛋白反射系数测量变化4,并在全细胞电生理膜片钳测量5,6-积分蜂窝电流的评估以前使用。在本论文中,我们描述的协议,该协议允许研究者测量响应于药理学试剂的应用细胞内钙离子浓度的变化,估算出细胞内钙的基础水平,和评估个体的钙离子通道的活性。 Ratometric钙离子浓度的测量和膜片钳electrophysiology分别用来确定足细胞和信道活动中的变化,在细胞内钙离子浓度。

Protocol

动物使用和福利要坚持NIH指南实验动物以下机构动物护理和使用委员会(IACUC)审查和批准协议的管理和使用。 1.肾冲洗使用8〜12周龄雄性大鼠(建议是只SD菌株,但不同年龄和性别的其他菌株可以适当变化来使用)。 根据由IACUC协议所允许的过程麻醉动物;监测麻醉深度,检查动物。将在1.3实施手术的详细描述- 1.8可在Ilatovskaya 等人找到7。 <li…

Representative Results

这里我们讨论测量在足细胞中的钙水平急性改变的问题。 图1显示了实验方案设计,以便在新鲜的足细胞进行高分辨率实时荧光共焦成像和单离子通道活性的录音的示意表示孤立的啮齿类动物肾小球。简要地说,将大鼠麻醉后,肾脏应用PBS冲洗以清除血液它们。然后,将肾脏切除和解封装,并且肾小球从肾皮质通过差筛分分离。样品的部分可采取膜片钳分析,其余的可以装载荧光钙染…

Discussion

这里所描述的方法允许的钙处理由啮齿类肾小球的足细胞的分析。这种技术允许应用膜片钳单通道电生理和荧光比率共焦成像。然而,这两种方法可以单独使用,在他们自己的。该协议有几个相对简单的步骤,包括:1)肾脏冲洗; 2)肾小球通过差筛分分离; 3)进行膜片钳电生理实验,或用荧光钙标记染料更改胞内钙的比例共焦成像的肾小球的孵化。

为了分离肾小球,基于Gloy…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者想感谢格伦斯洛克姆(威斯康星医学院)和科琳A.拉文(尼康仪器公司)与显微镜实验优秀的技术援助。格雷戈里·布拉斯是公认的手稿校对至关重要。这项研究是支持的健康补助HL108880和美国糖尿病协会的国家机构给予1-15-BS-172(AS到),以及本J.里普斯研究奖学金由美国肾脏病学会(至DVI)。

Materials

Fluo4 AM Life Technologies F14217 500µl in DMSO
FuraRed AM Life Technologies F-3020
Poly-L-lysine Sigma-Aldrich P4707
Pluronic acid Sigma-Aldrich F-68  solution
Ionomycin Sigma-Aldrich I3909-1ML
Tube rotator Miltenyi Biotec GmbH 130-090-753 Germany
Nikon confocal microscope (inverted) Nikon Nikon A1R  Laser exitation 488nm. Emission filters 500-550nm and 570-620nm
Objective Nikon Plan Apo 60x/NA 1.4 Oil
Cover Glass Thermo Scientific 6661B52
High vacuum grease Dow Corning Silicone Compound
Software Nikon Nikon NIS-Elements 
Recording/perfusion chamber Warner Instruments RC-26
Patch Clamp amplifier Molecular Devices MultiClamp 700B
Data Acquisition System Molecular Devices Digidata 1440A Axon Digidata® System
Low Pass Filter Warner Instruments LPF-8 8 pole Bessel
Borosilicate glass capillaries World Precision Instruments 1B150F-4
Micropipette Puller Sutter Instrument Co P-97 Flaming/Brown type micropipette puller
Microforge Narishige MF-830 Japan
Motorized Micromanipulator Sutter Instrument Co MP-225
Inverted microscope Nikon Eclipse Ti
Microvibration isolation table TMC equipped with Faraday cage
Multichannel valve perfusion system AutoMake Scientific Valve Bank II
Recording/perfusion chamber Warner Instruments RC-26
Software Molecular Devices pClamp 10 . 2
Nicardipine Sigma-Aldrich N7510
Iberiotoxin Sigma I5904-5UG
Niflumic acid Sigma-Aldrich N0630
DIDS Sigma-Aldrich D3514-25MG
TEA chloride Tocris T2265
RPMI 1640 Life Technologies 11835030 without antibiotics
BSA Sigma-Aldrich A8327 30% albumin solution
Temperature controlled surgical table  MCW core for rodents
Steel sieves: #100 (150 μm), 140 (106 μm)
Gilson, Inc  SIEVE 3 SS FH NO200 Fisher Sci 50-871-316
Gilson, Inc  SIEVE 3 SS FH NO270 Fisher Sci 50-871-318
Gilson, Inc  SIEVE 3 SS FH NO400 Fisher Sci 50-871-320
 mesh 200  Sigma-Aldrich s4145 screen for CD-1
Binocular microscope Nikon Eclipse TS100
Binocular microscope Nikon SMZ745
Syringe pump-based perfusion system Harvard Apparatus
polyethylene tubing Sigma-Aldrich PE50
Isofluorane anesthesia http://www.vetequip.com/ 911103
Other basic reagents Sigma-Aldrich

References

  1. Machuca, E., Benoit, G., Antignac, C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum. Mol. Genet. 18, R185-R194 (2009).
  2. Haraldsson, B., Nystrom, J., Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451-487 (2008).
  3. Patrakka, J., Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463-468 (2009).
  4. Savin, V. J., Sharma, R., Lovell, H. B., Welling, D. J. Measurement of albumin reflection coefficient with isolated rat glomeruli. J. Am. Soc. Nephrol. 3, 1260-1269 (1992).
  5. Gloy, J., et al. Angiotensin II depolarizes podocytes in the intact glomerulus of the Rat. J. Clin. Invest. 99, 2772-2781 (1997).
  6. Nitschke, R., et al. Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int. 57, 41-49 (2000).
  7. Ilatovskaya, D., Staruschenko, A. Single-channel analysis of TRPC channels in the podocytes of freshly isolated glomeruli. Methods Mol Biol. 998, 355-369 (2013).
  8. Snitsarev, V. A., McNulty, T. J., Taylor, C. W. Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys. J. 71, 1048-1056 (1996).
  9. Fukuda, A., Fujimoto, S., Iwatsubo, S., Kawachi, H., Kitamura, K. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome. Nephrology (Carlton). 15, 321-326 (2010).
  10. Abramowitz, J., Birnbaumer, L. Physiology and pathophysiology of canonical transient receptor potential channels). FASEB J. 23, 297-328 (2009).
  11. Heeringa, S. F., et al. A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE. 4, e7771 (2009).
  12. Zhang, X., Song, Z., Guo, Y., Zhou, M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol. Cell. Biochem. 399, 155-165 (2015).
  13. Bohrer, M. P., et al. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J. Clin. Invest. 60, 152-161 (1977).
  14. Olson, J. L., Rennke, H. G., Venkatachalam, M. A. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab. Invest. 44, 271-279 (1981).
  15. Schiessl, I. M., Castrop, H. Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Renal Physiol. 305, F1189-F1200 (2013).
  16. Ilatovskaya, D. V., Levchenko, V., Ryan, R. P., Cowley, A. W., Staruschenko, A. NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochem. Biophys. Res. Commun. 408, 242-247 (2011).
  17. Peti-Peterdi, J. Calcium wave of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 291, F473-F480 (2006).
  18. Peti-Peterdi, J., Warnock, D. G., Bell, P. D. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J. Am. Soc. Nephrol. 13, 1131-1135 (2002).
  19. Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am. J. Physiol. Cell Physiol. 305, C1050-C1059 (2013).
  20. Ilatovskaya, D. V., et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 305, C1050-C1059 (2014).
  21. Schaldecker, T., et al. Inhibition of the TRPC5 ion channel protects the kidney filter. J. Clin. Invest. 123, 5298-5309 (2013).
  22. Roshanravan, H., Dryer, S. E. ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am. J. Physiol. Renal Physiol. 306, F1088-F1097 (2014).
  23. Anderson, M., Roshanravan, H., Khine, J., Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell. Physiol. 229, 434-442 (2014).
check_url/52850?article_type=t

Play Video

Cite This Article
Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli. J. Vis. Exp. (100), e52850, doi:10.3791/52850 (2015).

View Video