Summary

Un "paciente-Like" ortotópico Singénico modelo de ratón de carcinoma hepatocelular Metástasis

Published: October 24, 2015
doi:

Summary

La diseminación metastásica del cáncer es la principal causa de muerte por cáncer. Proporcionamos una descripción en profundidad de nuestra metodología de la cirugía de supervivencia para el establecimiento de un sistema de modelo de ratón singénico "-paciente como" ortotópico para el estudio de los mecanismos de la metástasis en tumores de órganos sólidos.

Abstract

The majority of cancer-related deaths are caused by the metastasis of the cancer rather than the primary tumor itself. Yet, the underlying mechanisms of cancer metastasis are still unclear. Animal models are essential for elucidating the mechanisms and for evaluating novel strategies for the treatment of metastatic cancers. Here, an in-depth description of a “patient-like” orthotopic syngeneic mouse model for exploring the mechanisms of metastasis of solid organ tumors is provided. The survival surgical implantation of BNL 1ME A.7R.1 mouse hepatocellular carcinoma cells directly into the liver (the organ of origin) of the inbred wild-type immune competent laboratory mouse strain, BALB/c is described. The success and reproducibility of this methodology recommends it for widespread use in elucidating the biological mechanisms of solid organ cancer metastasis.

Introduction

Hepatocellular carcinoma (HCC) is one of the most lethal cancers, with poor prognosis and low life expectancy. Nearly all cancer-related deaths are due to the metastatic spread of the disease from the originating organ to additional distant organs2-6.HCC progression is a complex process. Therefore, being able to model the tumor microenvironment that is naturally found in metastatic HCC in animal models can prove to be a successful and useful way to reveal relevant mechanisms in humans.7Unfortunately, the mechanisms of cancer metastasis are still largely unclear. Therefore, there is a need to establish animal models that will enable us to elucidate the underlying molecular mechanisms of metastases of cancers such as HCC3,5.

Mouse model systems are a very useful approach for delineating mechanisms and evaluating novel strategies for treatment of metastatic human cancers5,8. The various mouse model systems that presently exist are a testament to efforts of researchers to correctly depict the complexity of the disease5,8,9.

Ogunwobi and colleagues recently used a survival surgical approach to demonstrate establishment of a novel orthotopic syngeneic mouse model for the study of metastasis in HCC3. Their work established a “patient-like” mouse model that recapitulates features of aggressive and metastatic HCCs3. They further demonstrated that this mouse model system can be used to study the biology of circulating tumor cells, and that this holds potential for gaining novel insights into the mechanisms of cancer metastasis3.

The aim of this paper is to describe in detail the methodology used in establishing this “patient-like” orthotopic syngeneic mouse model of HCC metastasis3. The methodology of how to implant BNL 1ME A.7R.1 mouse HCC cells directly into the liver (the organ of origin) of the inbred wild-type immune competent laboratory mouse strain, BALB/c3 using survival surgery will be described. Unlike other mouse xenograft tumor models where human tumor cells are implanted into immune deficient mice, this system is syngeneic and is, therefore, suitable for studying the role of the immune system in tumor metastasis3,5,8. This approach will likely gain widespread use for studying the mechanisms of metastasis in solid organ cancers.

Protocol

Declaración de Ética Todos los estudios con animales fueron aprobados por el Cuidado y Uso de Animales Comité Institucional (IACUC) de Hunter College de la City University de Nueva York. Nota: ocho ratones BALB / c fueron utilizados en este procedimiento experimental. Cinco ratones BALB / c fueron implantados con 5 x 10 6 células de carcinoma hepatocelular BNL 1ME A.7R.1 ratón para producir los tumores primarios. Tres ratones BALB / c sin implantacione…

Representative Results

Los hígados de ratones Balb / c se implantaron con 5 × 10 6 células de HCC ratón BNL 1ME A.7R.1. La evidencia clínica de desarrollo de HCC fue observable de los 63 días posteriores a la cirugía. En consecuencia, los ratones fueron sacrificados humanitariamente. La necropsia se realizó en los ratones sacrificados. Los pulmones y el hígado fueron resecados y un examen cuidadoso bruto se realizó para identificar tumores macroscópicos. En un ratón, se observó un tumor superficial en la superficie del…

Discussion

En este artículo se da una descripción detallada del método que se informó recientemente por Ogunwobi y colegas del éxito del establecimiento de un modelo de ratón singénico ortotópico de HCC metástasis (Figura 2) 3. La tasa de absorción de los tumores para este procedimiento es generalmente alto. Hemos observado previamente una tasa de absorción del tumor de 100% 3. Sin embargo, la tasa de absorción puede ser variable en función de la competencia del investigador. En …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Pascal DuBois for proof-reading the article. The authors would also like to thank the personnel of the Animal Facility at Hunter College of The City University of New York. This work was supported by a NIH RCMI grant to Hunter College.

Materials

Micro Dissecting Tweezer  Roboz (RS-5040) Tip .20 x .12mm
Graefe Micro Dissecting Forceps, serrated curved tip Roboz (RS-5111) 1 X 2 teeth, curved tip width 0.6mm
Micro Dissecting Retractor-Agricola (3 by 3 prongs) Roboz (RS-6501) Blunt 3 X 3 prongs, depth 4mm, spread 25mm
Micro Dissecting Retractor-Goldstein (3 by 3 prongs) Roboz (RS-6503) Blunt, 3 X 3 prongs, depth 4mm, spread 19mm
Jameson Caliper (Measures tumors) Roboz (RS-6466) 80mm/3 inch scale, chrome plated 
Micro Dissecting Scissors, large ring sissors, straight and sharp Roboz (RS-5852) 23mm blades, length 4 inches, flat shanks and large rings
Scalpel with blades, for delicate dissecting procedures Roboz (RS-9861-36)
Scalpel handle  Roboz (RS-9884) Solid
Littauer Stitch Sissors Roboz (RS-7074) Length 4.5 inches
Brown needle holder, for easy suture tying Roboz (RS-7960) Convex jaw, fine serrations
Reflex 7MM wound clips with reflex 7 clip applier Roboz (RS-9262) safe, secure alternative method of wound closure
Instrument tray and lid Roboz RT-1350S
Mini-clipper with detachable blade Roboz (RS-5903)
Germinator 500 (the Germ Terminator) Dry Sterilizer Roboz Ds-400, Ds-401, DS-501 For fast decontamination of micro-dissecting instruments.   Instruments decontaminate within 15 seconds. 
Microinjection needles VWR BD305125 25G Needle

References

  1. Sheng, W., et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab on a Chip. 14, 89-98 (2014).
  2. Ogunwobi, O. O., Liu, C. Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: insights from experimental models. Critical Reviews in Oncology/Hematology. 83, 319-328 (2012).
  3. Ogunwobi, O. O., Puszyk, W., Dong, H. J., Liu, C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PloS One. 8, e63765 (2013).
  4. Ogunwobi, O. O., Liu, C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clinical and Experimental Metastasis. 28, 721-731 (2011).
  5. Fujiwara, S., et al. A novel animal model for in vivo study of liver cancer metastasis. World Journal of Gastroenterology : WJG. 18, 3875-3882 (2012).
  6. Wirtz, D., Konstantopoulos, K., Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer. 11, 512-522 (2011).
  7. Heindryckx, F., Colle, I., Van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. International Journal of Experimental Pathology. 90, 367-386 (2009).
  8. Zhang, L., et al. An in vivo mouse model of metastatic human thyroid cancer. Thyroid Official Journal of the American Thyroid Association. 24, 695-704 (2014).
  9. Menezes, M. E., et al. Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Advances in Cancer Research. 121, 331-382 (2014).
  10. Ogunwobi, O. O., Wang, T., Zhang, L., Liu, C. Cyclooxygenase-2 and Akt mediate multiple growth-factor-induced epithelial-mesenchymal transition in human hepatocellular carcinoma. Journal of Gastroenterology and Hepatology. 27, 566-578 (2012).
  11. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 100, 57-70 (2000).
  12. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer. 2, 563-572 (2002).
  13. Kim, M. Y., et al. Tumor self-seeding by circulating cancer cells. Cell. 139, 1315-1326 (2009).
  14. Stolpe, A., Pantel, K., Sleijfer, S., Terstappen, L. W., den Toonder, J. M. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Research. 71, 5955-5960 (2011).
  15. Saad, F., Pantel, K. The current role of circulating tumor cells in the diagnosis and management of bone metastases in advanced prostate cancer. Future Oncology. 8, 321-331 (2012).
check_url/52858?article_type=t

Play Video

Cite This Article
Das, D. K., Durojaiye, V., Ilboudo, A., Naidoo, M. K., Ogunwobi, O. A “Patient-Like” Orthotopic Syngeneic Mouse Model of Hepatocellular Carcinoma Metastasis. J. Vis. Exp. (104), e52858, doi:10.3791/52858 (2015).

View Video