Summary

Guidée par IRM dmPFC-SMTr comme un traitement pour trouble dépressif majeur résistant au traitement

Published: August 11, 2015
doi:

Summary

Here we outline the procedure for MRI-guided repetitive transcranial magnetic stimulation to the dorsomedial prefrontal cortex as an experimental treatment for major depressive disorder.

Abstract

Here we outline the protocol for magnetic resonance imaging (MRI) guided repetitive transcranial magnetic stimulation (rTMS) to the dorsal medial prefrontal cortex (dmPFC) in patients with major depressive disorder (MDD). Technicians used a neuronavigation system to process patient MRIs to generate a 3-dimensional head model. The head model was subsequently used to identify patient-specific stimulatory targets. The dmPFC was stimulated daily for 20 sessions. Stimulation intensity was titrated to address scalp pain associated with rTMS. Weekly assessments were conducted on the patients using the Hamilton Rating Scale for Depression (HamD17) and Beck Depression Index II (BDI-II). Treatment-resistant MDD patients achieved significant improvements on both HAMD and BDI-II. Of note, angled, double-cone coil rTMS at 120% resting motor threshold allows for optimal stimulation of deeper midline prefrontal regions, which results in a possible therapeutic application for MDD. One major limitation of the rTMS field is the heterogeneity of treatment parameters across studies, including duty cycle, number of pulses per session and intensity. Further work should be done to clarify the effect of stimulation parameters on outcome. Future dmPFC-rTMS work should include sham-controlled studies to confirm its clinical efficacy in MDD.

Introduction

La stimulation magnétique transcrânienne répétitive (SMTr) est une forme de stimulation corticale focale indirecte. SMTr emploie brèves impulsions de champ électromagnétiques focaux qui pénètrent dans le crâne pour stimuler régions cible du cerveau. SMTr est pensé pour engager les mécanismes de synaptique potentialisation à long terme et la dépression à long terme, augmentant ou diminuant l'excitabilité corticale de la région stimulée 1. En général, la fréquence des impulsions détermine la rTMS ses effets: la stimulation de la fréquence la plus élevée tend à être excitatrice, tandis que la fréquence est plus faible inhibiteur. Procédures de stimulation non-invasives sont aussi largement utilisés comme sonde de causalité pour induire «lésions corticales« temporaires, et établir des relations neural comportement ou régions fonctionnelles en désactivant temporairement la fonction d'une région corticale souhaité 2 – 4.

Thérapeutique SMTr implique de multiples séances de stimulation, habituellement appliqués une fois daily sur plusieurs semaines, pour traiter une variété de troubles, y compris le trouble dépressif majeur (MDD) 5, 6 troubles de manger, et le trouble obsessionnel-compulsif 7. SMTr pour MDD est une option potentielle pour les patients médicalement réfractaires, et permet au clinicien de cibler et de modifier l'excitabilité d'une région corticale directement impliqués avec étiologie dépressif ou physiopathologie de manière non invasive. La cible corticale classique pour MDD-rTMS est le cortex préfrontal dorsolatéral (DLPFC) 8. Toutefois, des preuves convergentes de la neuro-imagerie, lésion, et les études de stimulation identifie le cortex préfrontal dorso-médian (dmPFC) comme une cible potentiellement important thérapeutique pour MDD 9 et une variété d'autres troubles psychiatriques caractérisés par des déficits dans l'auto-régulation des pensées, des comportements, et émotionnelle 10 États. Le dmPFC est une région d'activation cohérent dans la régulation émotionnelle 11, régulation comportementale 12,13. LadmPFC est également associée à neurochimique 14, 15 de structure, fonctionnelles et 16 anomalies dans MDD

Décrit ici est la procédure pour 20 séances (4 semaines) de l'imagerie par résonance magnétique (IRM) guidée SMTr à l'dmPFC bilatéralement, comme un traitement pour un trouble dépressif majeur. En plus d'un protocole de 10 Hz conventionnel appliqué plus de 30 min, un protocole de stimulation thêta rafale intermittente (SCT) est discuté, qui applique 50 Hz triplet rafales à 5 Hz sur une session de 6 min 17. Ces deux protocoles sont considérés comme excitateur, avec le protocole SCT ayant le potentiel de produire des effets comparables en utilisant une session beaucoup plus court 18. Dans les deux protocoles, IRM anatomiques ainsi que les évaluations cliniques sont acquis avant la SMTr. Neuronavigation utilise les analyses anatomiques pour tenir compte de la variabilité anatomique de dmPFC et d'optimiser l'emplacement de la SMTr. Une relativement nouvelle bobine 120 ° SMTr de liquide refroidi coudée à était également noused afin de stimuler les structures corticales médianes plus profond. Enfin, la rTMS titrage d'intensité a été utilisé au cours de la première semaine de sessions rTMS faire en sorte que les patients pourraient habituer aux niveaux de douleur plus élevés associés à dmPFC stimulation par rapport à la stimulation de DLPFC classique.

Protocol

Cette étude a été approuvée par le Comité d'éthique de la recherche à l'University Health Network. Sélection 1. Objet Procéder à une évaluation initiale sur un patient prospective. Les critères d'inclusion comprenaient la présence d'un épisode dépressif actuel qui est résistant à au moins 1 essai adéquat de médicaments, et un Manuel diagnostique et statistique des troubles mentaux, Cinquième édition (DSM-5) le diagnostic de MDD établi par le p…

Representative Results

Dans des travaux antérieurs, Hamd 17 a été utilisé comme une mesure de la réponse au traitement pour 10 Hz dmPFC-SMTr. Le tableau 1 présente les pré et post-traitement Hamd 17 scores dans une série de cas déjà publié 27. Parmi tous les sujets, de pré-traitement Hamd 17 score était 21.66.9 qui a diminué significativement par 4,331% à 12.58.2 post-SMTr (22 t = 6,54, p <0,0001) 27. L'utilisation d'un critère de ré…

Discussion

Ici, guidée par IRM dmPFC-rTMS a été appliquée pour le traitement résistant MDD. En général, la SMTr sur ce site a été bien toléré, avec un inconfort du cuir chevelu doux et douleur au site de stimulation qui ont été gérés de manière adéquate en utilisant le titrage adaptatif. Dans des essais ouverts et un examen des dossiers, à la fois à 10 Hz et thêta stimulation éclater entraîné des améliorations importantes de la gravité dépressif tel que mesuré par le Hamd 17 et BDI-II.

<p …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Aisha Dar, Vanathy Niranjan, and Dr. Umar Dar for technical assistance with rTMS delivery and data collection. The authors also wish to acknowledge the generous support of the Toronto General and Western Hospital Foundation, the Buchan Family Foundation, and the Ontario Brain Institute in funding this work.

Materials

3T GE Signa HDx Scanner GE n/a
Visor 2.0 Neuronavigation System ANT Neuro n/a
MagPro R30 Stimulator MagVenture n/a
Cool-DB80 Coil MagVenture n/a

References

  1. Fitzgerald, P. B., Fountain, S., Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology. 117, 2584-2596 (2006).
  2. Pascual-Leone, A., Gates, J. R., Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 41, 697-702 (1991).
  3. Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., Saxe, R. Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America. 107, 6753-6758 (2010).
  4. Hilgetag, C. C., Théoret, H., Pascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nature neuroscience. 4, 953-957 (2001).
  5. Berman, R. M., et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biological psychiatry. 47, 332-337 (2000).
  6. Van den Eynde, F., et al. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biological psychiatry. 67 (8), 793-795 (2010).
  7. Berlim, M. T., Neufeld, N. H., Vanden Eynde, F. Repetitive transcranial magnetic stimulation (rTMS) for obsessive-compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials. Journal of psychiatric research. 47 (8), 999-1006 (2013).
  8. Fitzgerald, P. B., et al. A randomized trial of unilateral and bilateral prefrontal cortex transcranial magnetic stimulation in treatment-resistant major depression. Psychological Medicine. 41, 1187-1196 (2011).
  9. Downar, J., Daskalakis, Z. J. New targets for rTMS in depression: A review of convergent evidence. Brain Stimulation. 6, 231-240 (2013).
  10. Downar, J., Sankar, A., Giacobbe, P., Woodside, B., Colton, P. Unanticipated Rapid Remission of Refractory Bulimia Nervosa, during High-Dose Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex: A Case Report. Frontiers in psychiatry. 3 (30), 1-5 (2012).
  11. Gallinat, J., Brass, M. Keep Calm and Carry On”: Structural Correlates of expressive suppression of emotions. PLoS ONE. 6, e1-e4 (2011).
  12. Langner, R., Cieslik, E. C., Rottschy, C., Eickhoff, S. B. Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity. Brain structure, & function. , (2014).
  13. Jung, Y. -. C., et al. Synchrony of anterior cingulate cortex and insular-striatal activation predicts ambiguity aversion in individuals with low impulsivity. Cerebral cortex. 24 (5), 1397-1408 (2014).
  14. Auer, D. P., Pütz, B., Kraft, E., Lipinski, B., Schill, J., Holsboer, F. Reduced glutamate in the anterior cingulate cortex in depression: An in vivo proton magnetic resonance spectroscopy study. Biological Psychiatry. 47, 305-313 (2000).
  15. Bora, E., Fornito, A., Pantelis, C., Yucel, M. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry research. 211 (1), 37-46 (2013).
  16. Sheline, Y. I., Price, J. L., Yan, Z., Mintun, M. A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America. 107, 11020-11025 (2010).
  17. Huang, Y. -. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron. 45, 201-206 (2005).
  18. Bakker, N., et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimulation. In Press, 1-22 (2014).
  19. Talairach, J., Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Neuropsychologia. 39, 145 (1988).
  20. Terao, Y., et al. A single motor unit recording technique for studying the differential activation of corticospinal volleys by transcranial magnetic stimulation. Brain Research Protocols. 7, 61-67 (2001).
  21. Schutter, D. J. L. G., van Honk, J. A standardized motor threshold estimation procedure for transcranial magnetic stimulation research. The journal of ECT. 22, 176-178 (2006).
  22. Downar, J., Geraci, J., et al. Anhedonia and Reward-Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biological psychiatry. , 1-26 (2013).
  23. Downar, J., Geraci, J., et al. Anhedonia and Reward-Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biological Psychiatry. 76 (3), 176-185 (2014).
  24. Beck, A. T., Steer, R. A., Brown, G. K. . Manual for the Beck depression inventory-II. , 1-82 (1996).
  25. Beck, A. T., Epstein, N., Brown, G., Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. Journal of consulting and clinical psychology. 56, 893-897 (1988).
  26. Hamilton, M. C. Hamilton Depression Rating Scale (HAM-D). REDLOC. 23, 56-62 (1960).
  27. Salomons, T. V., et al. Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial Prefrontal rTMS in Major Depressive Disorder. Neuropsychopharmacology official publication of the American College of Neuropsychopharmacology. 39, 488-498 (2014).
  28. Hayward, G., et al. Exploring the physiological effects of double-cone coil TMS over the medial frontal cortex on the anterior cingulate cortex: an H2(15)O PET study. The European journal of neuroscience. 25, 2224-2233 (2007).
  29. Vanneste, S., Ost, J., Langguth, B., De Ridder, D. TMS by double-cone coil prefrontal stimulation for medication resistant chronic depression: a case report. Neurocase. 20 (1), 61-68 (2014).
  30. Mueller, S., et al. Individual Variability in Functional Connectivity Architecture of the Human Brain. Neuron. 77, 586-595 (2013).
  31. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry. 72, 595-603 (2012).
  32. Fox, M. D., Liu, H., Pascual-Leone, A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage. 66, 151-160 (2013).
  33. Kedzior, K., Azorina, V., Reitz, S. More female patients and fewer stimuli per session are associated with the short-term antidepressant properties of repetitive transcranial magnetic stimulation (rTMS): a meta-analysis of 54 sham-controlled studies published between 1997-2013. Neuropsychiatric disease and treatment. 10, 727-756 (2014).
  34. Lee, J. C., Blumberger, D. M., Fitzgerald, P. B., Daskalakis, Z. J., Levinson, A. J. The Role of Transcranial Magnetic Stimulation in Treatment-Resistant Depression: A Review. Current Pharmaceutical Design. 18, 5846-5852 (2012).
  35. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research. 133, 425-430 (2000).
  36. Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., Priori, A. Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Progress in neuro-psychopharmacology, & biological psychiatry. 39, 9-16 (2012).
  37. Mantovani, A., Simpson, H. B., Fallon, B. A., Rossi, S., Lisanby, S. H. Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP. 13, 217-227 (2010).
  38. Watts, B. V., Landon, B., Groft, A., Young-Xu, Y. A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder). Brain Stimulation. 5, 38-43 (2012).
  39. Berlim, M. T., Broadbent, H. J., Van den Eynde, F. Blinding integrity in randomized sham-controlled trials of repetitive transcranial magnetic stimulation for major depression: a systematic review and meta-analysis. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 16, 1173-1181 (2013).
  40. Brunoni, A. R., Lopes, M., Kaptchuk, T. J., Fregni, F. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis. PLoS One. 4, e4824 (2009).
  41. Chistyakov, A. V., Rubicsek, O., Kaplan, B., Zaaroor, M., Klein, E. Safety tolerability and preliminary evidence for antidepressant efficacy of theta-burst transcranial magnetic stimulation in patients with major depression. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 13, 387-393 (2010).
  42. Iyer, M. B., Schleper, N., Wassermann, E. M. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation). The Journal of neuroscience the official journal of the Society for Neuroscience. 23, 10867-10872 (2003).
  43. Vedeniapin, A., Cheng, L., George, M. S. Feasibility of simultaneous cognitive behavioral therapy and left prefrontal RTMS for treatment resistant depression. Brain Stimulation. 3, 207-210 (2010).
  44. Rumi, D. O., et al. Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: A double-blind placebo-controlled study. Biological Psychiatry. 57, 162-166 (2005).
  45. Platz, T., Rothwell, J. C. Brain stimulation and brain repair–rTMS: from animal experiment to clinical trials–what do we know. Restorative neurology and neuroscience. 28, 387-398 (2010).
check_url/53129?article_type=t

Play Video

Cite This Article
Dunlop, K., Gaprielian, P., Blumberger, D., Daskalakis, Z. J., Kennedy, S. H., Giacobbe, P., Downar, J. MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder. J. Vis. Exp. (102), e53129, doi:10.3791/53129 (2015).

View Video