Summary

Vurdering af immunmodulerende egenskaber af humane mesenchymale stamceller (MSC'er)

Published: December 24, 2015
doi:

Summary

De immunmodulerende egenskaber af humane mesenkymale stamceller (MSC) fremgår mere relevante for klinisk anvendelse. Ved hjælp af en co-dyrkningssystemet ifølge MSC'er og perifere blodleukocytter præ-farvet med det fluorescerende farvestof carboxyfluorescein succinimidyl ester (CFSE), beskriver vi in vitro vurdering af MSC immunmodulation på effektor leukocyt proliferation og specifikke subpopulationer.

Abstract

The immunomodulatory properties of multilineage human mesenchymal stem cells (MSCs) appear to be highly relevant for clinical use towards a wide-range of immune-related diseases. Mechanisms involved are increasingly being elucidated and in this article, we describe the basic experiment to assess MSC immunomodulation by assaying for suppression of effector leukocyte proliferation. Representing activation, leukocyte proliferation can be assessed by a number of techniques, and we describe in this protocol the use of the fluorescent cellular dye carboxyfluorescein succinimidyl ester (CFSE) to label leukocytes with subsequent flow cytometric analyses. This technique can not only assess proliferation without radioactivity, but also the number of cell divisions that have occurred as well as allowing for identification of the specific population of proliferating cells and intracellular cytokine/factor expression. Moreover, the assay can be tailored to evaluate specific populations of effector leukocytes by magnetic bead surface marker selection of single peripheral blood mononuclear cell populations prior to co-culture with MSCs. The flexibility of this co-culture assay is useful for investigating cellular interactions between MSCs and leukocytes.

Introduction

Humane mesenchymale stamceller (MSC'er) er somatiske stamceller, der kan differentiere til de akseparallelle mesodermale slægter af knogler, brusk og fedtvæv 1-4, samt et par extramesodermal slægter 5. Først isoleret fra den voksne knoglemarven, har disse multilineage progenitorer nu blevet fundet i mange væv 6-8 og uventet, vist sig at have stærke immunmodulerende egenskaber, der vises meget modtagelig for klinisk anvendelse 9-12. Detaljerede mekanismer involveret i de immunmodulerende effekter er aktivt at blive undersøgt for en effektiv anvendelse af specifikke sygdomstilstande enheder. En af de mest enkle måder at evaluere immunmodulation er ved at vurdere til undertrykkelse af effektor leukocyt spredning 13. De fleste effektor leukocytter såsom T-lymfocytter og monocytter formere uhyre når stimuleret eller aktiveret. Immunmodulerende funktion kan vurderes, når undertrykkelse afproliferation fremgår.

Traditionelt har effektor leukocyt proliferation blevet evalueret ved påvisning af [3H] thymidin-inkorporering i DNA. Men denne metode har betydelige ulemper på grund af de bekymringer af stråling og post-brug bortskaffelse samt det komplekse nødvendige udstyr. Mens der er ikke-radioaktive assays for at vurdere celleproliferation, at carboxyfluorescein succinimidyl ester (CFSE) assay har andre fordele såsom at muliggøre identifikation af specifikke cellulære populationer, hvilket er særligt nyttigt i co-kultur eksperimenter involverer flere celletyper. CFSE er et fluorescerende farvestof, som cellulært kan vurderes ved flowcytometrisk analyse. Som cellerne deler, er intensiteten af ​​denne cellulære label faldet proportionalt; dette giver ikke kun bestemmelse af den samlede celleproliferation, men også giver mulighed for vurdering af antallet af celledelinger op til 8 divisioner, før fluorescensen bliver vanskeligt at Detect mod baggrundssignal. Desuden stabiliteten af det fluorescerende CFSE muliggør in vivo sporing af mærkede celler, således at celler kan visualiseres op til mange måneder 14.

Dette assay kan også varieres for at vurdere specifikke typer af effektorceller leukocytter eller immunmodulerende funktion af specifikke populationer af MSC-induceret immunmodulerende leukocytter-såsom interleukin-10 (IL-10) produktion af CD14 + monocytter 15 ved at udføre magnetisk perle overflademarkør udvælgelse af cellepopulationer af interesse før eller efter co-kultur som passende. Vores protokol beskriver den grundlæggende analyse af vurderingen af de immunmodulerende virkninger af MSC'er på effektor leukocytter (rutediagram vist på figur 1) og en variation af denne grundlæggende assay til evaluering af MSC-induceret leukocyt immunmodulation på allogene CD4 + T-lymfocytter (rutediagram vist i figur 4).

Protocol

Patient informeret samtykke som godkendt af Institutional Review Board skal indhentes til brug af humane celler. 1. densitetsgradient Isolering af humane perifere mononucleære blodceller (PBMC'er) Tilsæt 25 ml hepariniserede helblod i en 50 ml rør med en 25 ml pipette. Fortynd cellerne med 25 ml phosphatbufret saltvand (PBS). Der tilsættes 15 ml Ficoll-Paque densitetsgradient i en ny 50 ml rør, og mens vippe røret, meget langsomt og forsigtig…

Representative Results

Figur 1 betegner den samlede skema af eksperimentet, og figur 2 viser udseendet af de forskellige celledyrkningsbetingelser som visualiseret ved fase-kontrast mikroskopi omvendt. MSC er vedhæftende celler med en fibroblastisk, spindel-formet morfologi, mens PBMC'er og leukocytter er små runde ikke-klæbende celler. Disse to morfologisk forskellige celletyper kan tydeligt ses i co-kultur. Ved afslutningen af assayet, når PBMC'erne (eller leuckotyes) udsuges til flowcytometrisk analyse, selvom adh?…

Discussion

Increasingly, the immunomodulatory properties of MSCs are being translated into clinical use more rapidly than the multilineage capacity of these stem cells18-20. Thus, co-culture techniques of MSCs with leukocytes and assays to evaluate immune function are important to further delineate the specific mechanisms involved in these properties for optimizing effective therapeutic application.

One of the most critical technical aspects for success in these assays is having adequate PBMC…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by grants from NHRI (CS-104-PP-06 to B.L.Y.).

Materials

Ficoll-Paque PLUS GE Healthcare 71-7167-00 AG Density grandient for isolation of peripheral blood mononuclear cells (PBMCs)
Vibrant CFDA-SE Cell Tracer Kit (CFSE) Life Technologies V12883 Cellular label for detection of cell division
Phytoagglutinin (PHA) Sigma L8902 Activation of human PBMCs
Dynabeads Human T-Activator CD3/28 Life Technologies 111.32D Activation of human T lymphocytes, e.g. CD4+ T cells, CD8+ T cells,etc.
autoMACS™ Separator Miltenyi Biotec autoMACS™ Separator Magnetic based cell separator
autoMACS® Columns Miltenyi Biotec 130-021-101 separation columns
CD14 microbeads, human  Miltenyi Biotec 130-050-201 For positive selection of CD14+ human monocytes and macrophages from PBMCs
CD4 microbeads, human  Miltenyi Biotec 130-045-101 For positive selection of CD4+ human T lymphocytes from PBMCs
RPMI 1640 Medium Life Technologies 11875 Human PBMC/leukocyte culture medium
DMEM, Low glucose, pyruvate Life Technologies 11885 Human mesenchymal stem cell (MSC) culture medium
L-glutamine Life Technologies 25030-081 Supplementation for MSC complete medium
Penicillin/Streptomycin Life Technologies 15070-063 Supplementation for PBMC/leukocyte and MSC complete medium
Fetal bovine serum (FBS) 1) Hyclone, for MSC culture                   2) Life Technologies, for all other cells (i.e. PBMCs, specific leukocyte populations) 1) SH30070.03M 2) 10091-148 Pre-test lots for support of MSC in vitro culture
24-well cell culture plate Corning COR3524 Co-culture plate
50 mL centrifuge tube Corning 430291 Isolation PBMCs from whole blood by Ficoll-Paque PLUS
15 mL centrifuge tube  Corning 430766 Collection of the labeled and unlabeled cell fractions
Round-bottom tubes BD Falcon  352008 Collection of cells for flow cytometric analysis

References

  1. Friedenstein, A. J. Precursor cells of mechanocytes. Int Rev Cytol. 47, 327-359 (1976).
  2. Pittenger, M. F., et al. Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143-147 (1999).
  3. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 276, 71-74 (1997).
  4. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315-317 (2006).
  5. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  6. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228 (2001).
  7. Yen, B. L., et al. Isolation of multipotent cells from human term placenta. Stem Cells. 23, 3-9 (2005).
  8. Erices, A., Conget, P., Minguell, J. J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 109, 235-242 (2000).
  9. Bartholomew, A., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 30, 42-48 (2002).
  10. Chang, C. J., et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 24, 2466-2477 (2006).
  11. Uccelli, A., Moretta, L., Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8, 726-736 (2008).
  12. Chen, P. M., Yen, M. L., Liu, K. J., Sytwu, H. K., Yen, B. L. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci. 18, 49-59 (2011).
  13. Muul, L. M., et al. Measurement of proliferative responses of cultured lymphocytes. Curr Protoc Immunol. , (2011).
  14. Quah, B. J., Warren, H. S., Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2, 2049-2056 (2007).
  15. Chen, P. M., et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol. 96, 295-303 (2014).
  16. Oughton, J. A., Kerkvliet, N. I., Costa, L. G., Davila, J. C., Lawrence, D. A., Reed, D. J., Will, Y. UNIT 18.8 Immune cell phenotyping using flow cytometry. Curr Protoc Toxicol. , 18.8.1-18.8.24 (2005).
  17. Phelan, M. C., Lawler, G., Robinson, J. P., et al. APPENDIX 3A Cell counting. Curr Protoc Cytom. , A.3A.1-A.3A.4 (2001).
  18. Gebler, A., Zabel, O., Seliger, B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 18, 128-134 (2012).
  19. Le Blanc, K., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 371, 1579-1586 (2008).
  20. Tan, J., et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 307, 1169-1177 (2012).
  21. Le Blanc, K., et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 57, 11-20 (2003).
  22. Li, X. Y., et al. Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells. Mol Med Rep. 6, 1183-1189 (2012).
  23. Moll, G., et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties?. Stem Cells. 32, 2430-2442 (2012).
  24. Ho, P. J., Yen, M. L., Tang, B. C., Chen, C. T., Yen, B. L. H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal. 18, 1895-1905 (2013).
check_url/53265?article_type=t

Play Video

Cite This Article
Hsu, P., Liu, K., Chao, Y., Sytwu, H., Yen, B. L. Assessment of the Immunomodulatory Properties of Human Mesenchymal Stem Cells (MSCs). J. Vis. Exp. (106), e53265, doi:10.3791/53265 (2015).

View Video