Summary

Herstellung von Kohlenstoff-Nanoschichten bei Raumtemperatur

Published: March 08, 2016
doi:

Summary

We present the synthesis of an amphiphilic hexayne and its use in the preparation of carbon nanosheets at the air-water interface from a self-assembled monolayer of these reactive, carbon-rich molecular precursors.

Abstract

Amphiphilic molecules equipped with a reactive, carbon-rich “oligoyne” segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters.

Introduction

Zweidimensionale Kohlenstoffnanostrukturen gewinnen große Aufmerksamkeit aufgrund der berichteten hervorragenden elektrischen, thermischen sowie mechanischen Eigenschaften 1-5. Diese Materialien werden voraussichtlich 8-10 den technischen Fortschritt auf dem Gebiet der Polymer – Kompositen 6, Energiespeichereinrichtungen 7 und molekulare Elektronik weiter. Trotz intensiver Forschungsanstrengungen in den letzten Jahren jedoch, den Zugang zu größeren Mengen von gut definierten Kohlenstoff – Nanomaterialien ist noch begrenzt, die behindert ihre großtechnische Umsetzung in technologischen Anwendungen 11,12.

Kohlenstoff-Nanomaterialien sind zugänglich entweder durch top-down oder bottom-up-Ansatz. Typische Ansätze wie Abblätterung Techniken 13 oder Hochenergieprozesse auf Oberflächen 14-16 bieten die Möglichkeit , Materialien mit einem hohen Grad an struktureller Perfektion und sehr gute Leistung zu erhalten. Jedoch ist die Isolierung und Reinigung von the Produkte bleibt eine Herausforderung, und die großtechnische Produktion von definierten nanostrukturierten Materialien ist schwierig , 12. Auf der anderen Seite, von unten nach oben Ansätze eingesetzt werden können , die auf die Verwendung von molekularen Vorstufen angewiesen sind , deren Anordnung in definierte Strukturen und eine nachfolgende Verkokung, die die Kohlenstoffnanostrukturen 17-23 ergibt. In diesem Fall sind die Vorläufer selbst komplexer und ihre Herstellung erfordert oft mehrere Syntheseschritte. Diese Ansätze können bieten ein hohes Maß an Kontrolle über die chemischen und physikalischen Eigenschaften der resultierenden Materialien und kann einen direkten Zugang zu maßgeschneiderten Materialien liefern. Jedoch ist die Umwandlung der Vorläufer in Kohlenstoff – Nanomaterialien typischerweise bei Temperaturen oberhalb von 800 ° C durchgeführt wird , die 24-27 zu einem Verlust der eingebetteten chemische Funktionalisierung führt.

Die oben genannten Einschränkungen wurden durch den Einsatz von hochreaktiven oligoynes in unserer Gruppe gerichtet, die can in Kohlenstoff – Nanomaterialien bei Raumtemperatur 28,29 umgewandelt werden. Insbesondere Amphiphile eine hydrophile Kopfgruppe und eine hexayne Segment , das sind über eine Folge von Bromierungsreaktion und Palladium-vermittelte Negishi – Kreuzkupplungsreaktionen 30,31. Die Umwandlung dieser Vorläufermolekülen in die Zielstruktur auftritt bei oder unterhalb der Raumtemperatur bei Bestrahlung mit UV-Licht. Die hohe Reaktivität der oligoyne Amphiphile macht die Verwendung von Soft-Vorlagen, beispielsweise die Luft-Wasser-Grenzfläche oder Flüssig-Flüssig-Grenzflächen, möglich. In früheren Untersuchungen haben wir erfolgreich 28 Amphiphile Vesikeln aus Lösungen von hexayne Glykosid vorbereitet. Vernetzung dieser Vesikel wurde unter milden Bedingungen durch UV-Bestrahlung der Proben erreicht. Darüber hinaus haben wir vor kurzem selbstorganisierende Monoschichten aus hexaynes mit einem Carbonsäuremethylester- Kopfgruppe und einem hydrophoben Alkylschwanz an der Luft-Wasser-Grenzfläche in einem Langmuir-Trog vorbereitet. Das dicht Packed molekularen Vorstufen wurden dann in selbsttragenden Kohlenstoff-Nanoschichten bei Raumtemperatur durch UV-Bestrahlung ohne weiteres umgesetzt. In verwandten Ansätze molekularen Vorläufern definiert kürzlich für die Herstellung von zwei Dimensionen ausgedehnte Nanoschichten an der Luft-Wasser – Grenzfläche 32-38 verwendet.

Das Ziel dieser Arbeit ist es, einen kurzen, praktischen Überblick über die Gesamtsynthese und Herstellungsschritte zu geben, die für die Herstellung von Kohlenstoff-Nanoschichten aus hexayne Amphiphile ermöglichen. Der Schwerpunkt liegt auf der experimentellen Ansatz und präparative Fragen.

Protocol

Achtung: Bitte stellen Sie sicher, dass die entsprechenden Sicherheitsdatenblätter (SDB) vor der Verwendung von chemischen Verbindungen zu konsultieren. Einige der Chemikalien in diesen Synthesen verwendet werden, sind akut toxisch und krebserregend. Vorbereitete Nanomaterialien können zusätzliche Gefahren haben im Vergleich zu ihren Bulk-Pendant. Es ist zwingend notwendig, alle geeigneten Sicherheitspraktiken zu verwenden, wenn die Reaktionen (Abzug) und persönliche Schutzausrüstung (Schutzbrille, Handschuhe, Kitt…

Representative Results

Das 13 C – Kernspinresonanz (NMR) Spektrum des hergestellten Vorläufermolekül 3 zeigt die 12 sp -hybridisierten Kohlenstoffatome der hexayne Segment mit den entsprechenden chemischen Verschiebungen δ = 82-60 ppm (Abbildung 1b). Außerdem werden die Signale bei δ = 173 ppm und bei δ = 52 ppm zur Carbonylgruppe und Methylkohlen des Esters zugeordnet sind. Die Signale zwischen δ = 33-14 ppm an den aliphatischen Kohlenstoffatomen de…

Discussion

Die gewünschte hexayne Amphiphil (3) durch die sequentielle Bromierung 52,53 und Pd-katalysierten Verlängerung 30,31 des Alkins Segment, gefolgt von einer abschließenden Schutzgruppenabspaltungsreaktion des tritylphenyl Ester (2) (1a) 29 ohne weiteres hergestellt. Die erfolgreiche Synthese wird durch das 13 C – NMR – Spektrum (Abbildung 1b) sowie die UV-Vis – Absorptionsspektrum (Figur 1c) 31,54 bestätigt. Dies …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding from the European Research Council (ERC Grant 239831) and a Humboldt Fellowship (BS) is gratefully acknowledged.

Materials

Methyllithium lithium bromide complex (2.2M solution in diethylether) Acros 18129-1000 air-sensitive, flammable
Zinc chloride (0.7M solution in THF) Acros 38945-1000 air-sensitive, flammable
1,1'-Bis(diphenylphosphino)ferrocene]
dichloropalladium(II), DCM adduct 
Boron Molecular BM187
N-Bromosuccinimide Acros 10745 light-sensitive
Silver fluoride Fluorochem 002862-10g light-sensitive
n-Butyllithium (2.5M solution in hexanes) Acros 21335-1000 air-sensitive, flammable
Sodium methanolate Acros 17312-0050
Tetrahydrofuran (unstabilized, for HPLC) Fisher Chemicals T/0706/PB17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Toluene (for HPLC) Fisher Chemicals T/2306/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Acetonitrile (for HPLC) Fisher Chemicals A/0627/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Dichloromethane (Extra Dry over Molecular Sieve) Acros 34846-0010
Chloroforme (p.a.) VWR International 1.02445.1000
Pentane Reactolab 99050 Purchased as reagent grade and distilled once prior to use
Heptane Reactolab 99733 Purchased as reagent grade and distilled once prior to use
Dichloromethane Reactolab 99375 Purchased as reagent grade and distilled once prior to use
Diethylether Reactolab 99362 Purchased as reagent grade and distilled once prior to use
Geduran silica gel (Si 60, 40-60µm) Merck 1115671000
Langmuir trough R&K, Potsdam
Thermostat  E1 Medingen
Hamilton syringe  Model 1810 RN SYR
Vertex 70 FT-IR spectrometer  Bruker
External air/water reflection unit (XA-511)  Bruker
UV lamp (250 W, Ga-doped metal halide bulb) UV-Light Technology
Brewster angle microscope (BAM1+)  NFT Göttingen
Sapphire substrates Stecher Ceramics
Quantifoil holey carbon TEM grids Electron Microscopy Sciences
Nuclear magnetic resonance spectrometer (Bruker Avance III 400) Bruker
JASCO V-670 UV/Vis spectrometer JASCO
Scanning Electron Microscope (Zeiss Merlin FE-SEM) Zeiss

References

  1. Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Mater. 6 (3), 183-191 (2007).
  2. Lee, C., Wei, X., Kysar, J. W., Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321 (5887), 385-388 (2008).
  3. Lee, J. H., Loya, P. E., Lou, J., Thomas, E. L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 346 (6213), 1092-1096 (2014).
  4. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81 (1), 109-162 (2009).
  5. Lau, C. N., Bao, W., Velasco, J. Properties of suspended graphene membranes. Mater. Today. 15 (6), 238-245 (2012).
  6. Ramanathan, T., et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnol. 3 (6), 327-331 (2008).
  7. Fan, Z., Yan, J., Ning, G., Wei, T., Zhi, L., Wei, F. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon. 60, 558-561 (2013).
  8. Fiori, G., et al. Electronics based on two-dimensional materials. Nature Nanotechnol. 9 (10), 768-779 (2014).
  9. Burghard, M., Klauk, H., Kern, K. Carbon-Based Field-Effect Transistors for Nanoelectronics. Adv. Mater. 21 (25-26), 2586-2600 (2009).
  10. Avouris, P., Chen, Z., Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2 (10), 605-615 (2007).
  11. Zurutuza, A., Marinelli, C. Challenges and opportunities in graphene commercialization. Nature Nanotechnol. 9 (10), 730-734 (2014).
  12. Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K. A roadmap for graphene. Nature. 490 (7419), 192-200 (2013).
  13. Novoselov, K. S., et al. Electric field effect in atomically thin carbon films. Science. 306 (5696), 666-669 (2004).
  14. Li, X., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 324 (5932), 1312-1314 (2009).
  15. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J. M. Growth of graphene from solid carbon sources. Nature. 468 (7323), 549-552 (2010).
  16. Lee, J. H., et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science. 344 (6181), 286-289 (2014).
  17. Scott, L. T., et al. A rational chemical synthesis of C60. Science. 295 (5559), 1500-1503 (2002).
  18. Hoheisel, T. N., Schrettl, S., Szilluweit, R., Frauenrath, H. Nanostructured Carbonaceous Materials from Molecular Precursors. Angew. Chem. Int. Ed. 49 (37), 6496-6515 (2010).
  19. Schrettl, S., Frauenrath, H. Elements for a Rational Polymer Approach towards Carbon Nanostructures. Angew. Chem. Int. Ed. 51 (27), 6569-6571 (2012).
  20. Müllen, K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano. 8 (7), 6531-6541 (2014).
  21. Chen, L., Hernandez, Y., Feng, X., Müllen, K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 51 (31), 7640-7654 (2012).
  22. Paraknowitsch, J. P., Thomas, A. Functional Carbon Materials From Ionic Liquid Precursors. Macromol. Chem. Phys. 213 (10-11), 1132-1145 (2012).
  23. Titirici, M. M., et al. Sustainable carbon materials. Chem. Soc. Rev. 44 (1), 250-290 (2015).
  24. Angelova, P., et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano. 7 (8), 6489-6497 (2013).
  25. Zhi, L., Wu, J., Li, J., Kolb, U., Müllen, K. Carbonization of Disclike Molecules in Porous Alumina Membranes : Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angew. Chem. Int. Ed. 44 (14), 2120-2123 (2005).
  26. Zhi, L., et al. From Well-Defined Carbon-Rich Precursors to Monodisperse Carbon Particles with Hierarchic Structures. Adv. Mater. 19 (14), 1849-1853 (2007).
  27. Matei, D. G., et al. Functional single-layer graphene sheets from aromatic monolayers. Adv. Mater. 25 (30), 4146-4151 (2013).
  28. Szilluweit, R., et al. Low-temperature preparation of tailored carbon nanostructures in water. Nano Lett. 12 (5), 2573-2578 (2012).
  29. Schrettl, S., et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chem. 6 (6), 468-476 (2014).
  30. Hoheisel, T. N., Frauenrath, H. A Convenient Negishi Protocol for the Synthesis of Glycosylated Oligo(ethynylene)s. Org. Lett. 10 (20), 4525-4528 (2008).
  31. Schrettl, S., et al. Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chem. Sci. 6 (1), 564-574 (2015).
  32. Sakamoto, J., van Heijst, J., Lukin, O., Schlüter, A. D. Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?. Angew. Chem. Int. Ed. 48 (6), 1030-1069 (2009).
  33. Bauer, T., et al. Synthesis of Free-Standing, Monolayered Organometallic Sheets at the Air/Water Interface. Angew. Chem. Int. Ed. 50 (34), 7879-7884 (2011).
  34. Payamyar, P., et al. Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation. Adv. Mater. 26 (13), 2052-2058 (2014).
  35. Zheng, Z., et al. Synthesis of Two-Dimensional Analogues of Copolymers by Site-to-Site Transmetalation of Organometallic Monolayer Sheets. J. Am. Chem. Soc. 136 (16), 6103-6110 (2014).
  36. Sakamoto, R., et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Commun. 6, 6713 (2015).
  37. van Heijst, J., Corda, M., Lukin, O. Compounds bearing multiple photoreactive chalcone units: Synthesis and study towards 2D polymerization in Langmuir monolayers. Polymer. 70, 1-7 (2015).
  38. Murray, D. J., et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137 (10), 3450-3453 (2015).
  39. Li, J. J., Limberakis, C., Pflum, D. A. . Modern Organic Synthesis in the Laboratory. , (2007).
  40. Chai, C., Armarego, W. L. F. . Purification of Laboratory Chemicals. , (2003).
  41. Hoheisel, T. N., et al. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chem. 5 (4), 327-334 (2013).
  42. Brzozowska, A. M., Duits, M. H. G., Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf., A. 407, 38-48 (2012).
  43. Davies, J. T., Rideal, E. K. . Interfacial Phenomena. , (1963).
  44. Mendelsohn, R., Flach, C. R. Infrared Reflection-Absorption Spectrometry of Monolayer Films at the Air-Water Interface. Handbook of Vibrational Spectroscopy. , 1028-1041 (2002).
  45. Mendelsohn, R., Mao, G., Flach, C. R. Infrared reflection-absorption spectroscopy: Principles and applications to lipid-protein interaction in Langmuir films. Biochim. Biophys. Acta Biomembr. 1798 (4), 788-800 (2010).
  46. Hoenig, D., Moebius, D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J. Phys. Chem. 95 (12), 4590-4592 (1991).
  47. Hénon, S., Meunier, J. Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers. Rev. Sci. Instrum. 62 (4), 936-939 (1991).
  48. Kirby, K. W., Shanmugasundaram, K., Bojan, V., Ruzyllo, J. Interactions of Sapphire Surfaces with Standard Cleaning Solutions. ECS Trans. 11 (2), 343-349 (2007).
  49. Blodgett, K. B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 57 (6), 1007-1022 (1935).
  50. Langmuir, I., Schaefer, V. J. Activities of Urease and Pepsin Monolayers. J. Am. Chem. Soc. 60 (6), 1351-1360 (1938).
  51. Mendelsohn, R., Brauner, J. W., Gericke, A. External infrared reflection absorption spectrometry of monolayer films at the air-water interface. Annu. Rev. Phys. Chem. 46 (1), 305-334 (1995).
  52. Hofmeister, H., Annen, K., Laurent, H., Wiechert, R. A Novel Entry to 17a-Bromo- and 17a-Iodoethynyl Steroids. Angew. Chem. Int. Ed. Engl. 23 (9), 727-729 (1984).
  53. Kim, S., Kim, S., Lee, T., Ko, H., Kim, D. A New, Iterative Strategy for the Synthesis of Unsymmetrical Polyynes: Application to the Total Synthesis of 15,16-Dihydrominquartynoic Acid. Org. Lett. 6 (20), 3601-3604 (2004).
  54. Chalifoux, W. A., Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem. 2 (11), 967-971 (2010).
  55. Kaganer, V. M., Möhwald, H., Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71 (3), 779-819 (1999).
  56. Eda, G., et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22 (4), 505-509 (2010).
  57. Kumar, P. V., Bardhan, N. M., Tongay, S., Wu, J., Belcher, A. M., Grossman, J. C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem. 6 (2), 151-158 (2014).
  58. Chernick, E. T., Tykwinski, R. R. Carbon-rich nanostructures: the conversion of acetylenes into materials. J. Phys. Org. Chem. 26 (9), 742-749 (2013).
  59. Rondeau-Gagné, S., Morin, J. F. Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 43 (1), 85-98 (2014).

Play Video

Cite This Article
Schrettl, S., Schulte, B., Stefaniu, C., Oliveira, J., Brezesinski, G., Frauenrath, H. Preparation of Carbon Nanosheets at Room Temperature. J. Vis. Exp. (109), e53505, doi:10.3791/53505 (2016).

View Video