Summary

重组人蛋白与HEK293悬浮细胞的瞬时转染高产表达

Published: December 28, 2015
doi:

Summary

Laboratory-scale production of eukaryotic proteins with appropriate post-translational modification represents a significant barrier. Here is a robust protocol with rapid establishment and turnaround for protein expression using a mammalian expression system. This system supports selective amino acid, selective labeling of proteins and small molecule modulators of glycan composition.

Abstract

产生重组蛋白的复杂的翻译后修饰的技术代表的结构和功能研究的主要挑战。迅速建立和高回收率从瞬时转染的哺乳动物细胞系解决了这一障碍并为表达该通过ER和高尔基体介导的分泌途径自然引导蛋白质的一种有效手段。这里是使用人类的HEK293F和转染的设计的高蛋白质产量的哺乳动物表达载体HEK293S细胞系表达一个协议。这个系统的适用性用与之间95-120毫克每升培养物中回收纯化的蛋白的产量表达三个具有代表性的糖蛋白是证明。这些蛋白质是人类和FcγRIIIa的大鼠α2-6唾液酸转移酶,ST6GalI,既表达具有N-末端GFP融合,以及未经修饰的人免疫​​球蛋白G1的Fc。这个强大的系统UTIlizes一个无血清培养基是能适应于同位素富集蛋白质和碳水化合物用于使用质谱和核磁共振谱结构研究的表达。此外,所述N-聚糖的组合物可以通过添加一个小分子,以防止某些聚糖修饰的方式,并没有降低产量来调节。

Introduction

制备适当折叠和翻译后修饰的人蛋白质的高产量的结构和功能的详细的分析仍然是一个显著挑战。可产生重组蛋白具有天然样的功能和行为的大量表达系统。细菌表达系统,主要是大肠杆菌菌株,代表了最方便和常用的工具,在研究领域,由于这些表达系统的简单性,尽管酵母,植物,昆虫和哺乳动物系统也描述1-4。然而,大多数这些系统是不能的靶蛋白的适当的翻译后修饰。锋芒毕露和Moremen实验室的根本利益,是生产真核蛋白与适当的糖基化。许多人类蛋白质需要适当的糖基化的功能是否正常(见图5)。

真核糖基化机制是广泛的,能够进行修改多种多样,包括天冬酰胺(N)的-和丝氨酸/苏氨酸(O) -连接的复合聚糖6。据估计,人蛋白质的> 50%是N-糖基化的7。聚糖是许多蛋白质​​包括治疗性单克隆抗体,促红细胞生成素,和凝血因子样因子IX的必要成分,仅举几例。虽然多种方法可用来制备适当N-糖基化蛋白和范围从纯合成8-10,以酶法11月14日或恢复从工程改造的重组系统15-20,这并不奇怪,人表达系统迄今被证明是最稳健的方法产生的人类蛋白质。

许多治疗人糖蛋白产生在使用哺乳动物细胞的重组系统。值得注意的系统是中国仓鼠卵巢(CHO),小鼠骨髓瘤(NS0),幼仓鼠KidneY(BHK),人胚肾(HEK-293),并且被用在粘附或悬浮培养生产蛋白质4,21,22人视网膜细胞系。然而,哺乳动物蛋白表达系统需要的稳定细胞株,昂贵的生长培养基和基质辅助转程序23的生成。

哺乳动物细胞的转染与众多试剂,包括磷酸钙24,25,阳离子聚合物(DEAE-葡聚糖,聚凝胺,聚赖氨酸,聚乙酰亚胺(PEI))或带正电荷的阳离子脂质体26-29的帮助来实现。 PEI是聚阳离子,充电,直链或支链的聚合物(25 kDa)的26,其形成稳定的络合物与DNA和被内吞。在核内体的酸化,PEI被认为是膨胀,导致内体和DNA的释放的破裂进入细胞质26,30。

直到最近,在suspensi瞬时转染上培养进行事先的DNA / PEI复合物的形成,随后加入到细胞培养物29。然而,亚龙和同事报道了生产重组蛋白的HEK293细胞原位形成31,32的DNA / PEI复合物进行了优化的高效的协议。这避免了准备,复杂的灭菌,并进入培养基缓冲液交换。通过包括导致显著的产量增加33表达增强质粒进一步优化。这里是建立在这些进展和广泛适用的方法。表达的条件也可以被改变以影响N-聚糖组合物。

所述HEK293S细胞系,与基因缺失,其停止N-聚糖处理在中间级,导致与均匀N-聚糖的蛋白质组成的2 N-乙酰葡糖胺残基的加五甘露糖残基(曼5的GlcNAc 2)34中的表达, 35。这些细胞缺乏N-乙酰转移酶I(GntI),这是需要的下游N-聚糖处理36,37基因。使用糖基转移酶抑制剂,包括kifunensine,唾液酸类似物和岩藻糖类似物和2-脱氧-2-氟-岩藻糖也有类似的影响和限制N-聚糖处理38-41。

协议报这里使用pGEn2矢量如图1 42,43,PEI辅助瞬时转染到哺乳动物细胞系(HEK293F或HEK293S细胞),并适当地糖基化蛋白的高产率的恢复。这个系统是稳健,可容纳各种因素,包括同位素标记和聚糖工程用于生产重组蛋白的大效价。

Protocol

该协议是充分利用两种HEK293F或HEK293S细胞中的表达。 1.细胞建立培接种注:所有培养操作过程必须在BSL-2设施内进行和每个项目带入生物安全柜必须通过在水溶液中的70%的乙醇喷雾进行灭菌。 操作培养摇床中于135转,湿度80%,并在8.0%的CO 2和37℃。打开“的”生物安全柜中至少1小时前工作的紫外灯。 Prewarm密封培养基A和培养基B瓶在水浴在37℃进行1小时。 …

Representative Results

高水平表达和纯度这种优化的表达系统产生的高收率糖基化蛋白。典型的图案显示在IgG1的-Fc的(图1)的表达。在这种情况下,第0天是转染一天随后1天(稀释)和随后的培养天至第5天的蛋白质表达使用在粗培养基中的可溶性表达馏分进行分析。观察到在第1天的一个非常小的量的蛋白质表达作为培养等分试样取出?…

Discussion

这个协议说明通过HEK293F或S细胞的瞬时转染的蛋白表达。建立的倒钩和Moremen实验室的最佳转染条件采用细胞密度和试剂浓度的临界组合,以实现高效率的转染。实施这项协议时,关键的考虑因素包括:保持在转染前一个稳定的文化(具有一致的文化倍增时间);活跃生长的细胞的转染细胞存活率大于95%(按稀释细胞至1×10 6个细胞/ ml 24小时在转染之前实现);在转染细胞密度应在含90%培养…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由财政拨款K22AI099165(AWB)的支持,P41GM103390(KWM)和P01GM107012(KWM)由美国国立卫生研究院,以及来自生物化学,生物物理学和分子生物学的罗伊J.卡佛系美国爱荷华州立大学基金。这项工作的内容​​完全是作者的责任,并不一定代表美国国立卫生研究院的官方意见。

Materials

Biosafety cabinet  NuAire, Inc. CellGard ES NU-S475-400 Class II, Type A2 Biological Safety Cabinet
Incubation shaker INFORS HT Multitron Cell 
Medium A: FreeStyle Expression Medium  Life Technologies 12338-018
Medium B: ExCell 293 Serum-Free Medium  SIGMA 14571C 
125 Erlenmeyer Flask with Vented Cap Corning Incorporated/Life Sciences 431143
250 Erlenmeyer Flask with Vented Cap Corning Incorporated/Life Sciences 431144
FreeStyle HEK 293F Cells Life Technologies R790-07
1 ml Disposable serological pipette Fisher Scietific 13-676-10B
10 ml Disposable serological pipette Fisher Scietific 13-676-10J
25 ml Disposable serological pipette Fisher Scietific 13-676-10K
Pipettor (Pipet-Aid XP) Drummond Scientific 161263
Trypan Blue Solution  Thermo Scientific  SV30084.01
Counting slides  Bio-Rad 145-0011
TC20 Automated Cell Counter  Bio-Rad  145-0102
Polyethylenimine (PEI) Polysciences Inc. 23966 Prepare stock solution at a concentration of 1 mg/ml in a buffer containing 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 150 mM NaCl (pH 7.5). Dissolve PEI completely; sterilize through 0.22 μM syringe filter and store at -20 °C.
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) EMD Chemicals Inc. 7365-45-9
25 mm Syringe Filter, 0.22 μM Fisher Scietific 09-719A
Trisaminomethane (Tris base) Fisher Scietific BP152-1
XL1-Blue Stratagene 222249
Trypton Fisher Scietific BP1421-2
Yeast extract Fluka Analytical  92144
Sodium chloride BDH chemicals BDH8014
Plasmid Purification Kit QIAGEN 12145
Valproic (VPA) SIGMA P4543 Prepare stock solution of 220 mM  in water, sterilize by passage through a sterile 0.22 mm filter and store at -20 °C
Corning 250 mL Centrifuge Tube  Corning Incorporated/Life Sciences 430776
Centrifuge Thermo Scientific  EW-17707-65
Protein A-Sepharose column SIGMA P9424
Ni-NTA superflow QIAGEN 30430
3-(N-morpholino)propanesulfonic acid (MOPS) Fisher Scietific BP308-500
Glycine Fisher Scietific BP381-500
10 kDa molecular weight cut-off Amicon® Ultra centrifugal filters  Millipore UFC901096
Sodium dodecyl sulfate ALDRICH L3771
Beta-mercaptoethanol ALDRICH M6250
Glycerol SIGMA G5516
Precision Plus Protein All Blue Standards Bio-Rad 161-0373
Acetic Acid, Glacial  Fisher Scietific 64-19-7
coomassie brilliant blue  Bio-Rad  161-0406
MALDI-TOFMS Voyager-DE PRO  Applied Biosystems
15N labeled L-Tyrosine ALDRICH 332151
15N labeled L-Lysine ALDRICH 592900
Unlabeled L-Phenylalanine SIGMA-ALDRICH P2126
13C6-Glucose ALDRICH 389374
2-deoxy-2-fluoro-l-fucose  SANTA CRUZ Biotechnology sc-283123

References

  1. Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 72 (2), 211-222 (2006).
  2. Sorensen, H. P., Mortensen, K. K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 115 (2), 113-128 (2005).
  3. Contreras-Gomez, A., Sanchez-Miron, A., Garcia-Camacho, F., Molina-Grima, E., Chisti, Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog. 30 (1), 1-18 (2014).
  4. Bandaranayake, A. D., Almo, S. C. Recent advances in mammalian protein production. FEBS Lett. 588 (2), 253-260 (2014).
  5. Varki, A. . Essentials of Glycobiology. , (2009).
  6. Moremen, K. W., Tiemeyer, M., Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 13 (7), 448-462 (2012).
  7. Apweiler, R., Hermjakob, H., Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1473 (1), 4-8 (1999).
  8. Payne, R. J., Wong, C. H. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chemical Comm. 46 (1), 21-43 (2010).
  9. Wang, P., et al. Erythropoietin derived by chemical synthesis. Science. 342 (6164), 1357-1360 (2013).
  10. Yamamoto, N., Tanabe, Y., Okamoto, R., Dawson, P. E., Kajihara, Y. Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. J Am Chem Soc. 130 (2), 501-510 (2008).
  11. Huang, W., Giddens, J., Fan, S. Q., Toonstra, C., Wang, L. X. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc. 134 (29), 12308-12318 (2012).
  12. Schwarz, F., et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol. 6 (4), 264-266 (2010).
  13. Smith, E. L., et al. Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconj Chem. 25 (4), 788-795 (2014).
  14. Zou, G., et al. Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc. 133 (46), 18975-18991 (2011).
  15. Cox, K. M., et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotech. 24 (12), 1591-1597 (2006).
  16. Jarvis, D. L. Baculovirus-insect cell expression systems. Methods Enzymol. 463, 191-222 (2009).
  17. Li, H., et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nature Biotech. 24 (2), 210-215 (2006).
  18. Palmberger, D., Wilson, I. B., Berger, I., Grabherr, R., Rendic, D. SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One. 7 (4), e34226 (2012).
  19. Toth, A. M., Kuo, C. W., Khoo, K. H., Jarvis, D. L. A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotech. 182-183, 19-29 (2014).
  20. Yamane-Ohnuki, N., et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng. 87 (5), 614-622 (2004).
  21. Dalton, A. C., Barton, W. A. Over-expression of secreted proteins from mammalian cell lines. Protein Sci. 23 (5), 517-525 (2014).
  22. Legendre, J. Y., Szoka, F. C. Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc Natl Acad Sci U S A. 90 (3), 893-897 (1993).
  23. Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotech. 22 (11), 1393-1398 (2004).
  24. Jordan, M., Schallhorn, A., Wurm, F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24 (4), 596-601 (1996).
  25. Kingston, R. E., Chen, C. A., Okayama, H. Calcium phosphate transfection. Curr Protoc Immunol. Chapter 10, Unit 10.13 (2001).
  26. Boussif, O., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 92 (16), 7297-7301 (1995).
  27. Pagano, J. S., McCutchan, J. H., Vaheri, A. Factors influencing the enhancement of the infectivity of poliovirus ribonucleic acid by diethylaminoethyl-dextran. J Virol. 1 (5), 891-897 (1967).
  28. Fraley, R., Subramani, S., Berg, P., Papahadjopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem. 255 (21), 10431-10435 (1980).
  29. Schlaeger, E. J., Christensen, K. Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology. 30 (1-3), 71-83 (1999).
  30. Longo, P. A., Kavran, J. M., Kim, M. S., Leahy, D. J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enz. 529, 227-240 (2013).
  31. Backliwal, G., Hildinger, M., Hasija, V., Wurm, F. M. High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol Bioeng. 99 (3), 721-727 (2008).
  32. Backliwal, G., et al. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 36 (15), e96 (2008).
  33. Vink, T., Oudshoorn-Dickmann, M., Roza, M., Reitsma, J. J., de Jong, R. N. A simple, robust and highly efficient transient expression system for producing antibodies. Methods. 65 (1), 5-10 (2014).
  34. Unson, C. G. Expression of glucagon receptors in tetracycline-inducible HEK293S GnT1- stable cell lines: an approach toward purification of receptor protein for structural studies. Biopolymers. 90 (3), 287-296 (2008).
  35. Reeves, P. J., Callewaert, N., Contreras, R., Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A. 99 (21), 13419-13424 (2002).
  36. Stanley, P., Narasimhan, S., Siminovitch, L., Schachter, H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine–glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 72 (9), 3323-3327 (1975).
  37. Schachter, H. The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconjugate J. 17 (7-9), 465-483 (2000).
  38. Elbein, A. D., Tropea, J. E., Mitchell, M., Kaushal, G. P. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem. 265 (26), 15599-15605 (1990).
  39. Rillahan, C. D., et al. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol. 8 (7), 661-668 (2012).
  40. Okeley, N. M., et al. Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci U S A. 110 (14), 5404-5409 (2013).
  41. Chang, V. T., et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure. 15 (3), 267-273 (2007).
  42. Barb, A. W., et al. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry. 51 (22), 4618-4626 (2012).
  43. Subedi, G. P., Hanson, Q. M., Barb, A. W. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcgammaRIIIa binding. Structure. 22 (10), 1478-1488 (2014).
  44. Barb, A. W., Brady, E. K., Prestegard, J. H. Branch-specific sialylation of IgG-Fc glycans by ST6Gal-I. Biochemistry. 48 (41), 9705-9707 (2009).
  45. Anumula, K. R., Taylor, P. B. A Comprehensive Procedure for Preparation of Partially Methylated Alditol Acetates from Glycoprotein Carbohydrates. Anal Biochem. 203 (1), 101-108 (1992).
  46. Parekh, R. B., et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 316 (6027), 452-457 (1985).
  47. Yagi, H., et al. Backbone H, C, and N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol NMR Assign. , (2014).
  48. Al-Rubeai, A. B. A. M. Effects of Serum and Growth Factor on HEK 293 Proliferation and Adenovirus Productivity. Animal Cell Tech: Basic & Appl Aspects. 15, 19-23 (2009).
  49. Kaufman, S. M. A. A. R. J., Makrides, S. C. Ch. 13, Gene Transfer and Expression in Mammalian Cells. New Comprehensive Biochemistry. 38, 411-432 (2003).
  50. Berlec, A., Strukelj, B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 40 (3-4), 257-274 (2013).
  51. Nothaft, H., Szymanski, C. M. Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem. 288 (10), 6912-6920 (2013).
  52. Barb, A. W. Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [(13)C,(15)N]-N-acetylglucosamine labeling of immunoglobulin G1. Biochemistry. 54 (2), 313-322 (2015).
check_url/53568?article_type=t

Play Video

Cite This Article
Subedi, G. P., Johnson, R. W., Moniz, H. A., Moremen, K. W., Barb, A. W. High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension. J. Vis. Exp. (106), e53568, doi:10.3791/53568 (2015).

View Video