Summary

Imagem raciométrica de pH extracelular no biofilme dentário

Published: March 09, 2016
doi:

Summary

Um corante raciométrica sensível ao pH é utilizado em combinação com a microscopia de varrimento a laser confocal e análise de imagem digital para monitorar o pH extracelular em biofilmes dentários em tempo real.

Abstract

O pH em biofilmes bacterianas nos dentes é de importância central para a cárie dentária, uma doença com alta prevalência em todo o mundo. Nutrientes e metabólitos não são distribuídas uniformemente em biofilmes dentais. Uma interacção complexa de sorção de reacção e com a matéria orgânica no biofilme reduz os caminhos de difusão de solutos e cria gradientes íngremes de moléculas reactivas, incluindo os ácidos orgânicos, entre os biofilme. métodos microscópicos fluorescentes quantitativos, tais como a imagiologia de tempo de vida de fluorescência ou ratiometry pH, pode ser utilizado para visualizar o pH em diferentes microambientes de biofilmes dentais. pH ratiometry explora um deslocamento dependente do pH na emissão de fluorescência de corantes sensíveis ao pH. O cálculo da razão de emissão em dois comprimentos de onda diferentes permite a determinação do pH local em imagens microscópicas, independentemente da concentração do corante. Contrariamente ao microeléctrodos a técnica permite monitorar ambos os gradientes de pH verticais e horizontais em tempo real commecanicamente perturbar o biofilme. No entanto, é preciso ter cuidado para diferenciar com precisão entre os compartimentos extra e intracelulares do biofilme. Aqui, o corante raciométrica, seminaphthorhodafluor 4F-5- (e-6) ácido carboxílico (C-SNARF-4) é empregue para monitorizar o pH extracelular in vivo em biofilmes dentais cultivadas espécies de composição desconhecida. Após a exposição a glicose do corante é up-concentrada dentro de todas as células bacterianas nos biofilmes; É, assim, usado tanto como uma mancha universal de bactérias e como um marcador do pH extracelular. Após a aquisição da imagem microscópica confocal, a biomassa bacteriana é removida de todas as fotos usando o software de análise de imagem digital, que permite calcular exclusivamente pH extracelular. ratiometry pH com o corante proporcional está bem adequado para o estudo do pH extracelular em biofilmes finos de até 75 um de espessura, mas está limitada ao intervalo de pH entre 4,5 e 7,0.

Introduction

O método descrito aqui permite a monitorização do pH extracelular em biofilmes dentais na gama entre 4,5 e 7, utilizando o corante raciométrica seminaphthorhodafluor 4F-5- (e-6) ácido carboxílico (C-SNARF-4), em combinação com a microscopia de varrimento a laser confocal e análise de imagem digital. O corante fluorescente empregue é sensível ao pH e exibe uma mudança na sua emissão fluorescente, dependendo do estado de protonação. A emissão fluorescente dos picos de moléculas protonadas a 580 nm, e a emissão da molécula desprotonado em 640 nm 1. A razão entre as intensidades de emissão fluorescente em duas janelas de detecção que compreende os dois picos de emissão (576-608 nm e 629-661 nm) reflecte, portanto, o pH na fase líquida, independentemente da concentração de corante. Com um valor de pKa de 6,4 ~ o corante é adequado para visualização em ambientes de pH moderadamente ácidas.

PH no biofilme bacteriano é de importância central para todos os processos metabólicos.No caso de biofilmes dentais, o pH na matriz extracelular é o factor de virulência chave para o desenvolvimento de cárie dentária. Longos períodos com pH baixo na liderança interface de biofilme-tooth para retardar a desmineralização do esmalte subjacente 2. Devido à arquitectura tridimensional complexa de biofilmes, metabolitos, incluindo os ácidos orgânicos, não são uniformemente distribuídos através do biofilme. Altamente e menos microambientes acidogênicas pode ser encontrada em estreita proximidade espacial 3.

Durante décadas, os gradientes de pH verticais em biofilmes foram gravadas com a ajuda de microeletrodos 4-6. Enquanto eles oferecem uma boa resolução espacial devido ao seu tamanho pequeno ponta, eles não são adequados para monitorar gradientes horizontais. Além disso, a inserção do eléctrodo perturba o biofilme mecanicamente. técnicas microscópicas fluorescentes quantitativos oferecem a vantagem de visualizar mudanças de pH em diferentes áreas de um biofilme sem interferir mecânicance. Diferentes campos de vista microscópico pode ser escolhido livremente e fotografada várias vezes ao longo de períodos prolongados 1,7-9. No entanto, ao interpretar imagens microscópicas de biofilme, é importante fazer a distinção entre a fluorescência derivada da biomassa microbiana e a fluorescência resultante a partir do espaço extracelular. Em condições acídicas, o pH no interior das células bacterianas é diferente do pH na matriz extracelular, como as bactérias transportar activamente protões através sua membrana celular à custa de adenosina trifosfato 10. No contexto da cárie dentária, pH bacteriana intracelular não tem um impacto direto sobre o esmalte subjacentes enquanto baixo pH extracelular leva a desmineralização. Média de pH em imagens microscópicas que contêm ambas as áreas e bactérias livres de bactérias leva a resultados errados. A utilização de outras manchas, juntamente com o corante sensível ao pH, a fim de visualizar a biomassa bacteriana e diferenciar entre as áreas extra e intracelulares traz abo risco de contaminação de fluorescência do espaço extracelular e erros de medição 11.

Por conseguinte, o presente manuscrito descreve a utilização do corante raciométrica numa função dupla; tanto como um marcador de pH e como uma mancha universal de bactérias. Como o corante é-se concentrado em células bacterianas, a combinação de imagem microscópica confocal e um processo de análise de imagem digital preciso permite determinar o pH extracelular no intervalo entre 4,5 e 7,0 em biofilmes finos dentários.

Protocol

O protocolo experimental foi analisado e aprovado pelo Comitê de Ética de Aarhus County (M-20100032). 1. confocal microscópica Calibração do Ratiometric Dye Para aquisição de imagem, use um microscópio invertido confocal equipado com uma incubadora, uma objectiva de imersão em água abertura 63X / 1.2-numérico, uma linha de laser 543 nm e um detector de META. Preparar tampão HEPES soluções de reserva (50 mM, ajustado a pH 4,5-8,5 em passos de 0,1 unidades de pH). Pipetar 100 l d…

Representative Results

O método apresentado permite a monitorização extracelular pH cai em diferentes microambientes de biofilmes dentais na gama de pH de 4,5 a 7, em tempo real. Se as condições experimentais são escolhidas como descrito acima, o pH começa a cair em todas as áreas dos biofilmes logo após a exposição à glicose. Quando o pH em um biofilme gotas, as células bacterianas se tornam visíveis dentro de pouco tempo (<1 min),…

Discussion

Monitorização microscópica de pH biofilme proporciona várias vantagens, como comparado com eléctrodos ou microeléctrodos 4-6 medições. técnicas microscópicas permitir determinar pH com uma alta resolução espacial e permitir a captura gradientes de pH horizontais e verticais em biofilmes sem perturbar o biofilme mecanicamente. As tentativas anteriores de monitoramento do pH microscópico, no entanto, não conseguiram diferenciar entre pH extracelular e intracelular no biofilme 1,7,9. Dev…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer a Javier E. Garcia e Lene Grønkjær de assistência técnica e Merete K. Raarup para discussões frutíferas. Este trabalho foi financiado pelo Aarhus University Research Foundation eo Simon Spies Foundation.

Materials

Zeiss LSM 510 META Zeiss N/A
C-Apochromat 63X water immersion objective Zeiss N/A
XL Incubator PeCON N/A
SNARF-4F 5-(and-6)-Carboxylic Acid Life Technologies S23920
Dimethyl sulfoxide Life Technologies D12345
HEPES Life Technologies 11344-041
Costar 96-well black clear-bottom plate Fisher Scientific 07-200-567
Custom-made glass slabs (4x4x1 mm; 1,200 grit) Menzel N/A
Alginate impression material GC Corporation N/A
Acrylic Adjusting Logic Sets/set of acrylic dental burs Axis Dental LS-906
Orthodontic retainer containers Spark Medical Equipment Co., Ltd SK-WDTC01
Sticky wax Dentsply N/A
Chewing paraffin wax  Ivoclar Vivadent AG N/A
Dithiothreitol Sigma Aldrich D0632 Used during preparation of salivary solution
0.45 µm and 0.2 µm syringe filters Sigma Aldrich CLS431220; CLS431219 
daime University of Vienna, Austria http://dome.csb.univie.ac.at/daime
ImageJ NIH, Bethesda, Maryland, USA http://imagej.nih.gov/ij/

References

  1. Hunter, R.C., & Beveridge, T.J. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71 (5), 2501-2510 (2005).
  2. Takahashi, N., & Nyvad, B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 42 (6), 409-418 (2008).
  3. Schlafer, S. et al. pH landscapes in a novel five-species model of early dental biofilm. PLoS.One. 6 (9), e25299 (2011).
  4. von Ohle, C., et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76 (7), 2326-2334 (2010).
  5. Revsbech, N.P. Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Methods Enzymol. 397 147-166 (2005).
  6. Vanhoudt, P., Lewandowski, Z., & Little, B. Iridium oxide pH microelectrode. Biotechnol. Bioeng. 40 (5), 601-608 (1992).
  7. Franks, A.E. et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy & Environmental Science. 2 (1), 113-119 (2009).
  8. Hidalgo, G. et al. Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl. Environ. Microbiol. 75 (23), 7426-7435 (2009).
  9. Vroom, J.M. et al. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65 (8), 3502-3511, (1999).
  10. Bender, G.R., Sutton, S.V., & Marquis, R.E. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53 (2), 331-338, (1986).
  11. Schlafer, S. et al. Ratiometric imaging of extracellular pH in bacterial biofilms using C-SNARF-4. Appl. Environ. Microbiol. 81(4):1267-73 (2015).
  12. Dige, I., Nilsson, H., Kilian, M., & Nyvad, B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J Oral Sci. 115 (6), 459-467 (2007).
  13. de Jong, M.H., van der Hoeven, J.S., van OS, J.H., & Olijve, J.H. Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. Appl. Environ. Microbiol. 47 (5), 901-904, (1984).
  14. Daims, H., Lucker, S., & Wagner, M. daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8 (2), 200-213 (2006).
  15. Liu, Y.L., Nascimento, M., & Burne, R.A. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int. J Oral Sci. 4 (3), 135-140 (2012).
check_url/53622?article_type=t

Play Video

Cite This Article
Schlafer, S., Dige, I. Ratiometric Imaging of Extracellular pH in Dental Biofilms. J. Vis. Exp. (109), e53622, doi:10.3791/53622 (2016).

View Video