Summary

完整的和更新的“轮虫混养法”饲养第一移送斑马鱼

Published: January 17, 2016
doi:

Summary

Larval zebrafish are adapted to feed on zooplankton. It is possible to capitalize on this natural feature in the laboratory by growing first feeding fish together in the same system with live saltwater rotifers. This “polyculture” strategy promotes high growth and survival with minimal labor and disturbance to the larvae.

Abstract

The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an “on-demand”, nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding.

Introduction

斑马鱼( 斑马鱼 )是一个卓越的实验动物在越来越多的科学学科的利用,包括但不限于发育遗传学,毒理学,行为,水产养殖,再生生物学,以及许多人类疾病1的造型 5。虽然品种相对容易在实验室中保持,有许多与它们培养6相关联的管理的挑战。最突出的是苗种培育,特别是当鱼第一次开始喂气膀胱充气7其后。在正常,控制的条件下,此发育事件发生在〜5天后受精(DPF),但有以下3 -生长5天是特别关键的7。在这一阶段的中心技术难度是充分满足第一馈送幼虫的营养需求 – 饲料项目必须适当尺寸,diges1149,有吸引力,并在几乎连续的基础上提供,而不在培养罐产生过多的浪费。历史上,这已经达到一般通过提供大量的少量饲料鱼的坦克,以及常规的水交换8,9。虽然这些方法有一定程度的成功,它们是效率低下的,要求高劳动投入,并返回唯一的变量和生长和存活10的速率限制。

在自然界中,斑马鱼幼体想必饲料丰富的小礼物在水体中浮游动物11。出于这个原因,结合了活饲料如草履虫 ,轮虫和卤虫 larviculture协议通常是最有效的7。 2010年,百思及其合作者表明,它是可能的静态,苦咸水以及海水轮虫的第5天的外源性饲养12幼虫生长的斑马鱼。这种方法,它利用ES轮虫培养的天然高生产率,以提供充足的,高营养的猎物,不污染水,幼虫生长和存活的低劳动力投入12,13的收益率非常高的速度。近年来,越来越多的世界各地的实验室都采用这个协议的变化,现在很多都培养轮虫以连续的方式来支持育苗系统14。

在过去的几年中,为轮虫/斑马鱼混养和轮虫的生产方式进行了细化和改进,变得更加标准化和轻松扩展。本文提供了一步一步的说明1)连续和强大的轮虫生产及2)建立用于支持鱼类生长健壮的第5天的外源性摄食轮虫/斑马鱼混养系统。

Protocol

1.轮虫文化 文化系统使用的是100升培养容器基本组件 收集所有组件的轮虫培养设置。轮虫培养装置由一个培养容器(CV)发展壮大的轮虫;类似的船只,以保持喂料轮虫(喂料培养容器,FCV);圆底孵化缸(订阅水库,FR),用于存储所述藻类饲料混合物(AFM)的;气源(AS),以充气的简历,燃料电池汽车和FR;蠕动泵计量定时器(PMT)来控制藻类交付饲料进入CV和燃料电池?…

Representative Results

这里所描述的连续轮虫培养系统是动态的,这是正常的轮虫数量的波动在小范围内随着时间的推移,如果有变化,日常饲养和收获率。在水产养殖设施在波士顿儿童医院的活性培养物中的一个的轮虫的人口,保持在上述的方式,进行30 天 (图3)监控。在此期间,平均培养密度为932轮虫/毫升,最大为1330轮虫/ ml和至少510轮虫/毫升。这代表保持按照…

Discussion

成功实施轮虫混养方法喂养早期幼虫的斑马鱼,需要有效的协议两个任务:第一喂养以及在同一水箱轮虫斑马鱼幼体连续轮虫培养体系的建立和维护喂鱼,和培养。

设置用于连续盐水轮虫生产系统首先由劳伦斯和共同作者14所述斑马鱼的实验室已被修改和增强的多种方法,使得它更加在应用健壮和普遍。新的协议包含改进都在设备和方法。

存储?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

在保健和本协议描述的代表性结果产生鱼的使用是完全按照规定的机构动物护理和使用委员会在波士顿儿童医院,协议#14-05-2673R的指导方针进行。

Materials

Rotifer Culture Infrastructure
100 Liter Culture Vessel Aquaneering Custom Polycarbonate culture vessel, conical bottomed, with drain valve
5 Gallon Culture Bucket Kit Reed Mariculture CCS Starter Kit Small volume culture vessel for small facilities
Rigid Clear Tubing 1/2" O.D., 36” Pentair Aquatic Ecosystems 16025 Rigid clear tubing for air delivery
Mesh tube Pentair Aquatic Ecosystems RT444X Mesh tube support for floss filter
Rotifer Floss Reed Mariculture Rotifer floss 12” x 42” Particulate waste trap
Peristaltic Metering Timer Pump, 5 GPD Grainger 38M003  Metering pump with timer for dosing feed to rotifers
Peristaltic Metering Timer Pump, 1-100 mL/h (for smaller-scale culture) Coral Vue SKU: IC-LQD-DSR Metering pump with timer for dosing feed to rotifers
Silicone Tubing  Cole Parmer Tubing for algae delivery to rotifer vessel
Rigid Clear Tubing " O.D.,36” Pentair Aquatic Ecosystems 16025 Rigid clear tubing for air delivery to algae paste
Rigid Clear Tubing O.D., 36” Pentair Aquatic Ecosystems 16025 Rigid clear tubing for algae delivery
Rotifers
Live Rotifers Brachionus plicatilis Type L Reed Mariculture Type L 5 million Rotifer stock culture for system startup
Rotifer Feed
Sodium hydroxymethylsulfonate Reed Mariculture ClorAm-X® 1lb tub Ammonia reducer for algae feed mix
Sodium Bicarbonate Fisher Scientific S25533B pH buffer for algae feed mix
Microalgae concentrate Reed Mariculture Rotigrow Plus® 1 liter bag Nutritionally optimized rotifer feed
Water Preparation
 Reef Crystals Reef Salt That Fish Place 198210 Salt for making culture water (NOTE: this item is an example only; any contaminant free salt formulations may be used). 
Refractometer Pentair Aquatic Ecosystems SR6 measuring salinity
Rotifer Culture Equipment
Plankton Collectors 12" Dia, 53 microns Pentair Aquatic Ecosystems BBPC20 Mesh screen for collecting rotifers
Scrub Pads Pentair Aquatic Ecosystems SCR-58 Scrub pad for cleaning inside of culturing vessels
Scrub Brush
Bucket Grainger Supply  43Y530 Graduated bucket for mixing culture water
Hatching Jar Pentair Aquatic Ecosystems J30 Storage of algae feed mix
Lugol’s Solution, Dilute Fisher Scientific S99481 Agent used to immobilize live rotifers for counting
Sedgewick-Rafter plankton counting slide with grid  Pentair Aquatic Eco-Systems M415 Counting rotifers
Miscelleneous
Tea Strainer Kitchenworks 971972 Used for collecting zebrafish embryos after spawning

References

  1. Ribas, L., & Piferrer, F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture. 6, 209-240 (2014).
  2. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nature reviews. Genetics. 11, 710-722 (2010).
  3. Gemberling, M., Bailey, T. J., Hyde, D. R., & Poss, K. D. The zebrafish as a model for complex tissue regeneration. Trends in genetics : TIG. 29, 611-20 (2013).
  4. Santoriello, C., & Zon, L. I. Hooked! modeling human disease in zebrafish. Journal of Clinical Investigation. 122, 2337-2343 (2012).
  5. Selderslaghs, I. W. T., Blust, R., & Witters, H. E. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reproductive Toxicology. 33 (2), 142-154 (2012).
  6. Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture. 269, 1-20 (2007).
  7. Harper, C., & Lawrence, C. The Laboratory Zebrafish (Laboratory Animal Pocket Reference). CRC Press (2010).
  8. Nusslein-Volhard, C., & Dahm, R. Zebrafish, A Practical Approach. Oxford University Press (2002).
  9. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish. University of Oregon Press (2007).
  10. Carvalho, P., & Arau, L. Rearing zebrafish (Danio rerio) larvae without live food: evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquaculture Research. 37, 1107-1111 (2006).
  11. Spence, R., Gerlach, G., Lawrence, C., & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc. 83 (1), 13-34 (2008).
  12. Best, J., Adatto, I., Cockington, J., James, A., & Lawrence, C. A novel method for rearing first-feeding larval zebrafish: polyculture with Type L saltwater rotifers (Brachionus plicatilis). Zebrafish. 7 (3) 289-295 (2010).
  13. Lawrence, C. Advances in zebrafish husbandry and management. Methods in Cell Biology. 104, 429-451 (2011).
  14. Lawrence, C., Sanders, E., & Henry, E. Methods for culturing saltwater rotifers (Brachionus plicatilis) for rearing larval zebrafish. Zebrafish. 9, 140-6 (2012).
  15. Tucker, C. S., & Hargreaves, J. A. Biology and Culture of Channel Catfish. 34, 634-657 (2004).
check_url/53629?article_type=t

Play Video

Cite This Article
Lawrence, C., Best, J., Cockington, J., Henry, E. C., Hurley, S., James, A., Lapointe, C., Maloney, K., Sanders, E. The Complete and Updated “Rotifer Polyculture Method” for Rearing First Feeding Zebrafish. J. Vis. Exp. (107), e53629, doi:10.3791/53629 (2016).

View Video