Summary

Beeldvorming Serotonerge vezels in de muis Spinal Cord Met behulp van de DUIDELIJKHEID / CUBIC Techniek

Published: February 26, 2016
doi:

Summary

Supraspinal projections are important for pain perception and other behaviors, and serotonergic fibers are one of these fiber systems. The present study focused on the application of the combined CLARITY/CUBIC protocol to the mouse spinal cord in order to investigate the termination of these serotonergic fibers.

Abstract

Aflopend lange vezels aan het ruggenmerg essentieel voor vervoer, pijnperceptie en andere gedragingen. De vezelafwerking patroon in het ruggenmerg van de meerderheid van deze vezels systemen niet grondig onderzocht bij soorten. Serotonerge vezels, die uitsteken in het ruggenmerg, zijn onderzocht bij ratten en buidelratten op histologische secties en hun functionele betekenis is afgeleid op basis van hun vezelafwerking patroon in het ruggenmerg. Met de ontwikkeling van de duidelijkheid en vierkante technieken is het mogelijk dit vezelsysteem en de verdeling ervan in het ruggenmerg, die waarschijnlijk eerder onbekende eigenschappen van serotonerge supraspinale wegen onthullen onderzoeken. Hier bieden we een gedetailleerd protocol voor het afbeelden van de serotonerge vezels in de muis ruggenmerg met behulp van de gecombineerde DUIDELIJKHEID en CUBIC technieken. Bij deze methode wordt perfusie van een muis met een hydrogel oplossing en verduidelijking van het weefsel met een combinatie van clearing reagentia. Ruggenmerg werd ontruimd in iets minder dan twee weken, en de daaropvolgende immunofluorescentiekleuring tegen serotonine werd in minder dan tien dagen afgerond. Met een multi-foton fluorescentiemicroscoop, werd het weefsel afgetast en een 3D beeld gereconstrueerd met behulp Osirix software.

Introduction

Supraspinal projections are responsible for the modulation of diverse behaviors such as pain perception. One of the projections carrying nociceptive information contains serotoninergic fibers, which originate from the hindbrain raphe and adjacent reticular nuclei1,2. Physiological and pharmacological studies have demonstrated an increased release of serotonin in the dorsal horn of the spinal cord after electrical stimulation of the raphe nuclei in the hindbrain3-5. In the rat and opossum, serotonergic raphespinal fibers have dense terminals, not only in the dorsal horn6-8, but also in the intermediate zone7,9,10, the ventral horn7,11, and even lamina 1012,13. There are no similar studies in the mouse. The present study aimed to map the termination pattern of serotonergic fibers arising from the hindbrain raphe nuclei and their adjacent reticular nuclei in the mouse spinal cord using the recently published CLARITY14 method and its modification – CUBIC15.

Conventional fluorescence or peroxidase immunohistochemistry of the spinal cord clearly shows the distribution of serotonergic fibers in the gray matter of the spinal cord in 30-40 µm thick cross-sections. However, this approach does not show the continuity of the serotonergic fiber tracts in the white matter and their collaterals in the gray matter. Although the 3D reconstruction of histological sections has advanced our knowledge of fiber tracts, it remains a challenge for histologists and anatomists to follow a single tract due to small distortions in the tissue caused by cutting. To circumvent this obstacle a number of researchers have developed various protocols for making the whole tissue structure transparent, and collecting an image of unaltered tissue in a single video file17-21. So far, the clear, lipid-exchanged, acrylamide-hybridized rigid, imaging/ immunostaining compatible, tissue hydrogel (CLARITY) technique, developed by Deisseroth’s group14,15, as well as CUBIC, developed by Susaki et al16 are the most successful. Since the publication of the protocols, many researchers have started using these techniques to investigate various aspects of biological tissues, including, not only the brain22-25, but also the heart, kidneys, intestine, and the lungs26,27.

By fixing the mouse spinal cord with the hydrogel solution (CLARITY) and clearing with the CUBIC reagents (which is a much faster method than that described by the original CLARITY protocol14,15), a spinal cord tissue block of 2-3 mm long was cleared within two weeks and immunofluorescence staining for serotonin completed in eight days. With just a combination of chemical agents, conventional immunohistochemistry can be used to create an image of individual fiber tracts in a 3D video file in approximately one month.

Protocol

Ethiek Verklaring: Alle procedures waarbij proefdieren volgen de richtlijnen van de Animal Care en Ethische Commissie (ACEC) aan de Universiteit van New South Wales (de goedgekeurde ACEC nummer 14 / 94A). 1. Voorbereiding van de Transparent Mouse Spinal Cord Bereiding van Ice Cold Hydrogel Solution Bereiding van 16% paraformaldehyde oplossing (PFA) Voeg 16 g paraformaldehyde poeder in 70 ml voorverwarmd gedistilleerd water (50-55 ° C) en roeren op een verhitte m…

Representative Results

Dit gedeelte toont de resultaten van serotonine antilichaam kleuring in de transparante muis ruggenmerg met behulp van een combinatie van duidelijkheid en CUBIC protocollen. We tonen aan dat serotonerge vezels in alle lagen van het ruggenmerg met een overwicht in het ventrale gedeelte van de ventrale hoorn zijn (figuur 1, zie ook Video 1). De controleweefsel geen positieve vezels (resultaat niet getoond). In de ventrale hoorn, dicht op elkaar gepakte ser…

Discussion

Het protocol beschreven laat zien hoe je het serotonerge vezels in de muis ruggenmerg met de gecombineerde DUIDELIJKHEID en CUBIC technieken. Er wordt een snellere zuiveringsproces ten opzichte van de passieve clearing protocol ontwikkeld door Cheung et al. 14 en Tomer et al. 15 en maakt het ruggenmerg weefsel goed worden ondersteund door de hydrogel tijdens het wissen.

Een belangrijke stap bij vastlegging van de muis ruggenmerg, zoals gerapporteerd do…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Australian Research Council Centre of Excellence for Integrative Brain Function (ARC Centre Grant CE140100007), an NHMRC project grant (#1086643). Prof. George Paxinos is supported by a Senior Principal Research Fellow NHMRC grant (#1043626).

Materials

Photoinitiator VA044 Wako va-044/225-02111 http://www.wako-chem.co.jp/specialty/waterazo/VA-044.htm
40% acrylamide solution Bio Rad 161-0140 http://www.bio-rad.com/en-au/sku/161-0140-40-acrylamide-solution
2% Bis Solution Bio Rad 161-0142 http://www.bio-rad.com/en-au/sku/161-0142-2-bis-solution?parentCategoryGUID=5e7a4f31-879c-4d63-ba0b-82556a0ccf1d
paraformaldehyde Sigma 158127 http://www.sigmaaldrich.com/catalog/product/sial/158127?lang=en&region=AU
urea Merck Millipore 66612 http://www.merckmillipore.com/AU/en/product/Urea—CAS-57-13-6—Calbiochem,EMD_BIO-66612
N,N,N’,N’-tetrakis (2-hydroxypropyl) ethylenediamine Merck Millipore 821940 http://www.merckmillipore.com/AU/en/product/Ethylenediamine-N,N,N',N'-tetra-2-propanol,MDA_CHEM-821940
Triton-X 100 Merck Millipore 648462 http://www.merckmillipore.com/AU/en/product/TRITON®-X-100-Detergent—CAS-9002-93-1—Calbiochem,EMD_BIO-648462
sucrose Sigma S0389 http://www.sigmaaldrich.com/catalog/product/sigma/s0389?lang=en&region=AU
2,2’,2’’- nitrilotriethanol Merck Millipore 137002 http://www.merckmillipore.com/AU/en/product/Triethanolamine-(Trolamine),MDA_CHEM-137022
serotonin antibody Merck Millipore AB938 http://www.merckmillipore.com/AU/en/product/Anti-Serotonin-Antibody,MM_NF-AB938
goat anti rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 594 conjugate Life Technologies  A-11012 https://www.lifetechnologies.com/order/genome-database/antibody/Rabbit-IgG-H-L-Secondary-Antibody-Polyclonal/A-11012
multi-photon microscope Leica Leica TCS SP5 MP STED http://www.leica-microsystems.com/products/confocal-microscopes/details/product/leica-tcs-sp5-mp/

References

  1. Rivot, J. P., Chaouch, A., & Besson, J. M. Nucleus raphe magnus modulation of response of rat dorsal horn neurons to unmyelinated fiber inputs: partial involvement of serotonergic pathways. J Neurophysiol. 44 (6), 1039-57, (1980).
  2. Liang, H., Paxinos, G., & Watson, C. Projections from the brain to the spinal cord in the mouse. Brain Struct Funct. 215 (3-4), 159-86 (2011).
  3. Sorkin, L. S., McAdoo, D. J., & Willis, W. D. Raphe magnus stimulation-induced anti-nociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res. 618 (1), 95-108, (1993).
  4. Rivot, J. P, Chiang, C. Y., & Besson, J. M. Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res. 238 .(1), 117-26, (1982).
  5. Hentall, I. D., Pinzon, A., & Noga, B. R. Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience. 142 (3), 893-903 (2006).
  6. Bullitt, E., & Light, A. R. Intraspinal course of descending serotoninergic pathways innervating the rodent dorsal horn and lamina X. J Comp Neurol. 286 (2), 231-42, (1989).
  7. Jones, S. L., & Light, A. R. Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J Comp Neurol. 297 (2), 267-82, (1990).
  8. Marlier, L., Sandillon, F., Poulat, P., Rajaofetra, N., Geffard, M., & Privat, A. Serotonergic innervation of the dorsal horn of rat spinal cord: light and electron microscopic immunocytochemical study. J Neurocytol. 20 (4), 310-22, (1991).
  9. Morrison, S. F & Gebber, G. L. Axonal branching patterns and funicular trajectories of raphespinal sympathoinhibitory neurons. J Neurophysiol. 53 (3), 759-72, (1985).
  10. Barman, S. M., & Gebber, G. L. The axons of raphespinal sympathoinhibitory neurons branch in the cervical spinal cord. Brain Res. 441 (1-2), 371-6, (1988).
  11. Martin, G. F., Cabana, T., Ditirro, F. J., Ho, R. H., & Humbertson, A. O. Jr. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity. J Comp Neurol. 208 (1), 67-84, (1982).
  12. Bowker, R. M., Westlund, K. N., & Coulter, J. D. Origins of serotonergic projections to the lumbar spinal cord in the monkey using a combined retrograde transport and immunocytochemical technique. Brain Res Bull. 9 (1-6), 271-8, (1982).
  13. Watkins, L. R., Griffin, G., Leichnetz, G. R., & Mayer, D. J. Identification and somatotopic organization of nuclei projecting via the dorsolateral funiculus in rats: a retrograde tracing study using HRP slow-release gels. Brain Res. 223 (2), 237-255, (1981).
  14. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497 (7449), 332-7 (2013).
  15. Tomer, R., Ye, L., Hsueh, B., & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protoc. 9 (7), 1682-1697 nprot.2014.123 (2014).
  16. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-39 2014.03.042. (2014).
  17. Ke, M. T., Fujimoto, S., & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neurosci. 16 (8), 1154-1161 (2013).
  18. Ertürk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protoc. 7 (11), 1983-1995 (2012).
  19. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neurosci. 14 (11), 1481-1488 2928 (2011).
  20. Kuwajima, T., Sitko, A. A., Bhansali, P., Jurgens, C., Guido, W., & Mason, C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 140 (6), 1364-1368 (2013).
  21. Ertürk, A., & Bradke, F. High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol. 242, 57-64 (2013).
  22. Kim, S. Y., Chung, K., & Deisseroth, K. Light microscopy mapping of connections in the intact brain. Trends Cogn Sci. 17 (12), 596-599 2013.10. 005 (2013).
  23. Spence, R. D., et al. Bringing CLARITY to gray matter atrophy. NeuroImage. 101, 625-32. (2014).
  24. Ando, K., et al. Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D. Acta Neuropathol. 128 (3), 457-459 (2014).
  25. Zhang, H., & Rinaman, L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. In Press. (2015).
  26. Lee, H., Park, J. H., Seo, I., Park, S. H., & Kim, S. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Dev Biol. 14, 781, (2015).
  27. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158 (4), 945-58 (2014).
  28. Rosset, A., Spadola, L., & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 17 205-216 (2004).
check_url/53673?article_type=t

Play Video

Cite This Article
Liang, H., Schofield, E., Paxinos, G. Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique. J. Vis. Exp. (108), e53673, doi:10.3791/53673 (2016).

View Video