Summary

在单元格拉丹水凝胶中刺激细胞行为的应变梯度芯片

Published: August 08, 2017
doi:

Summary

这篇文章介绍了一个简单的方法,对提供非连续梯度静态菌株对同心单元格拉丹水凝胶来调节单元格对齐方式为组织工程。

Abstract

人工指导细胞对齐方式是在组织工程领域的热点话题。大部分的先前的研究已经进行单个单元格拉丹的水凝胶应变诱导细胞对准使用复杂的实验过程和质量控制系统,这是通常与污染问题。因此,在本文中,我们提出一种构建流控芯片用塑料的聚二甲基硅氧烷盖和紫外透明的玻璃基板,刺激的 3D 水凝胶的细胞行为的静态应变梯度的简单方法。超载的照片; 细胞预聚物中射流室可以生成凸曲线的 PDMS 膜在封面上。紫外光交联后通过弯曲的聚二甲基硅氧烷膜和缓冲区洗,调查细胞微环境下的同心圆形优缺点行为下个变种的梯度是自建在单一的流控芯片,没有外部文书。观察到的几何在指导下,在合作与应变刺激,相差 15-65%的水凝胶细胞对齐趋势变化后论证了 NIH3T3 细胞。后 3 天孵化,水凝胶几何主导下低的压应变,单元格对齐方式哪里细胞沿水凝胶伸长率高的压缩应变下的方向排列。这些,之间细胞细胞随机对齐方式由于耗散的激进指导的水凝胶伸长和图案的水凝胶的几何指导。

Introduction

作为模仿一个本机的微环境块材料,含细胞外基质 (ECM) 水凝胶可以重新生成仿生支架支持细胞的生长。拥有组织的职能,组织单元格对齐方式是一项基本要求。各种 (即,细胞表面) 2D 和 3D (即,封装在水凝胶的细胞) 培养或封装细胞中或与微型柔性衬底上取得了单元格对齐方式-或纳米模式1。在微体系结构的三维单元格对齐方式是更有吸引力,因为微环境是更接近于自然组织构造234。三维单元格对齐方式的一个常用方法是水凝胶形状23的几何提示。由于细胞增殖在短轴方向的受限空间,细胞目的沿微图案的水凝胶的长轴方向对齐。另一种方法是适用于凝胶来实现单元格对齐方式平行于拉伸方向45拉抻。

生物物理刺激对 ECM 的水凝胶,如压缩应变或电场的作用,能调节细胞功能的适当组织一体化、 增殖和分化123。很多研究已经通过使用多个机械控制单位46789一次应用一个应变条件探讨细胞行为。例如,机械步进电动机使用挤压或拉伸对 3D 封装细胞胶原凝胶一直共同的办法710。然而,这种控制的设备需要额外空间并面临孵化器791112中受污染的问题。此外,大型仪器不能精确的控制环境,以提供高重复性13

考虑到单元格拉丹水凝胶通常受雇在微尺度生物医学应用,它有利于结合 MEMS 技术来生成一个范围的应变/拉伸刺激同时探讨细胞行为在 3D 仿生构造体外21415161718。例如,利用气体压力变形聚二甲基硅氧烷膜在微流控芯片可以引起不同品系,开车去不同的谱系916细胞分化。然而,有许多技术难题,如在一个干净的房间和软件控制集成的电机、 泵、 阀门和压缩的气体的复杂的芯片制造工艺。

在这项工作,我们演示了一个简单的方法来获得自我维持的梯度静态应变微流控芯片采用同心圆形水凝胶模式和灵活的 PDMS 膜。不同于大多数现有的方法,我们的平台是便携式和一次性使用的微型设备,可以制作黄色房间外面并拥有自生梯度菌株对同心细胞封装水凝胶,无需外部机械设备孵化期间。3T3 成纤维细胞细胞行为受水凝胶形状组合和期间的观察 3 天内 3D ECM 拟态环境梯度应变片在单元格对齐方式显示出各种拉伸弹力的指导线索。

Protocol

1. GelMA Synthesis Weigh 10 g of gelatin powder and add it to a glass flask with 100 mL ofDulbecco's phosphate-buffered saline (DPBS). Put a magnetic stir bar into the flask and place the flask on a stirring hot plate. Cover the flask with aluminum foil to avoid water evaporation. Set the hot plate temperature to 50-60 °C and the stirrer at 100 rpm for 1 h to dissolve the gelatin powder well. After the gelatin has dissolved, add 8 mL of methacrylic anhydride very slowly (one drop …

Representative Results

若要比较每个循环的水凝胶在完成的应变梯度刺激芯片之间的机械变化,我们分别测量中的两个相同的芯片,具有 0 微升 (图 4a) 注射量和 40 µ L (图 4b),每个循环水凝胶的线条宽度。%伸长率每个圆圈都伸长 40 µ L 注射芯片中的除以相应的水凝胶在 0 微升注射芯片 (图 4 c) 的线宽。水凝胶是一种不可压缩的?…

Discussion

在本文中,我们报告一个简单的方法来比较水凝胶形状指导和拉伸拉伸后的单元格对齐方式行为。灵活的 PDMS 膜创建用于生成不同高度的同心圆形水凝胶圆顶形的曲率。后释放压力,PDMS 膜自动适用力于微图案水凝胶形成梯度应变延伸,与中心的最大值和最小值外, 边界处。应变梯度的形成由灵活的 PDMS 膜和处理的流控芯片设计的正应参加的几个重要参数: (i) 精确控制厚度的聚二甲基硅氧烷膜是关…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这个项目被支持由研究生学生研究国外程序 (NSC-101-2917-I-007-010);生物医学工程项目 (NSC-101-2221-E-007-032-MY3);和纳米技术国家计划 (NSC-101-2120-M-007-001-) 的侨生,台湾国家科学委员会。作者想要感谢阿里 Khademhosseini,荷兰货币恰姆彻纳尔,阿格保罗教授和哈佛大学医学院嵘利廖分享的水凝胶和单元格的封装技术。

Materials

1.5-mL black microcentrifuge tube Argos Technologies  03-391-161 This one can be replaced with a neutral color of 1.5-mL tube covered with aluminun foil
10X DPBS Sigma-Aldrich 56064C
Alexa Fluor 488 phalloidin  Invitrogen A12379 
BSA Sigma A1595
Calcein Molecular Probe C1430 For labeling viable cells
CCD PCO. Imaging Pixelfly qe
Cell membrane permeating solution Sigma-Aldrich X100 0.5% Triton X-100 for permeating cell membrane
DAPI Sigma-Aldrich D8417 Cell nucleus staining
Dialysis membrane Sigma-Aldrich D9527 Molecular weight cut-off = 14,000
DMEM Gibco 11995-065
Double-side tape 3M 8003
FBS Hyclone SH30071.03
Gelatin Sigma-Aldrich G2500 gel strength 300, type A, from porcine skin
High frequency electronic corona generator Electro-technic products MODEL BD-20
Methacrylic Anhydride Sigma-Aldrich 276685
Micro syringe Hamilton 80501 50 μL 
Microscope Olympus IX71 Include two filter sets: LF405/LP-B-000 and LF488/LP-C-000 from Semrock
Oxygen plasma machine Harrick plasma PDC-001
Paraformaldehyde Sigma-Aldrich P6148 For fixing cell
PDMS DOW CORNING Sylgard 184 Mixture for PDMS chip cast-molding fabrication
Pen-Strep Gibco 10378-016 penicillin/streptomycin
Photoinitiator CIBA Irgacure 2959
Propidium iodide Sigma-Aldrich P4170 For labeling dead cells
Sterile Filtration cup Millipore SCGPT05RE
TMSPMA Sigma-Aldrich 440159 For hydrogel immobilization
Ultrasonicator Delta D150H 150W, 43kHz
UV light DAIHAN WUV-L10
Freeze Dryer FIRSTEK 150311025
NIH3T3(fibroblast) Food Industry Research and Development Institute(FIRDI) 08C0011
MOXI Z Mini Automated Cell Counter ORFLO MXZ001

References

  1. Simmons, C. S., Petzold, B. C., Pruitt, B. L. Microsystems for biomimetic stimulation of cardiac cells. Lab Chip. 12 (18), 3235-3248 (2012).
  2. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  3. Guan, J., et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 32 (24), 5568-5580 (2011).
  4. Wan, C. R., Chung, S., Kamm, R. D. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng. 39 (6), 1840-1847 (2011).
  5. Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  6. Li, X., Chu, J. S., Yang, L., Li, S. Anisotropic effects of mechanical strain on neural crest stem cells. Ann. Biomed. Eng. 40 (3), 598-605 (2012).
  7. Butcher, J. T., Barrett, B. C., Nerem, R. M. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials. 27 (30), 5252-5258 (2006).
  8. Ramon-Azcon, J., et al. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip. 12 (16), 2959-2969 (2012).
  9. Park, S. H., Sim, W. Y., Min, B. H., Yang, S. S., Khademhosseini, A., Kaplan, D. L. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS One. 7 (9), e46689 (2012).
  10. Gould, R. A., et al. Cyclic Strain Anisotropy Regulates Valvular Interstitial Cell Phenotype and Tissue Remodeling in 3D Culture. Acta Biomater. 8 (5), 1710-1719 (2012).
  11. Kurpinski, K., Chu, J., Hashi, C., Li, S. Proc Anisotropic mechanosensing by mesenchymal stemcells. Natl Acad Sci USA. 103 (44), 16095-16100 (2006).
  12. Sim, W. Y., Park, S. W., Park, S. H., Min, B. H., Park, S. R., Yang, S. S. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip. 7 (12), 1775-1782 (2007).
  13. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-Induced Alignment in Collagen Gels. PLoS One. 4 (6), e5902 (2009).
  14. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J., Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 18 (7-8), 806-815 (2012).
  15. Wan, J. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers. 4 (2), 1084-1108 (2012).
  16. Moraes, C., Wang, G., Sun, Y., Simmons, C. A. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials. 31 (3), 577-584 (2010).
  17. Keung, A. J., Kumar, S., Schaffer, D. V. Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material. Cues. Annu Rev Cell Dev Biol. 26, 533-556 (2010).
  18. Segers, V. F., Lee, R. T. Stem-cell therapy for cardiac disease. Nature. 451 (7181), 937-942 (2008).
  19. Hsieh, H. Y., et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip. 14 (3), 482-493 (2014).

Play Video

Cite This Article
Hsieh, H., Chu, C., Chiu, M., Chu, S., Huang, T., Tseng, F. Gradient Strain Chip for Stimulating Cellular Behaviors in Cell-laden Hydrogel. J. Vis. Exp. (126), e53715, doi:10.3791/53715 (2017).

View Video