Summary

Геном Редактирование в<em> Astyanax mexicanus</em> Использование Транскрипция Активатор-как эффектор Нуклеазы (Таленс)

Published: June 20, 2016
doi:

Summary

Ген-таргетинга мутагенез теперь можно в широком диапазоне организмов с использованием методов редактирования генома. Здесь мы демонстрируем протокол для целевого гена мутагенеза с использованием активатора транскрипции как эффекторных нуклеаз (Таленс) в Astyanax mexicanus, вид рыбы , которая включает в себя поверхности рыбы и cavefish.

Abstract

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.

Introduction

Понимание генетической основы эволюции признака является критической целью исследования эволюционных биологов. Значительный прогресс был достигнут в выявлении локусы , лежащие в основе эволюции признаков и точного определения генов – кандидатов в этих локусов (например 1-3). Тем не менее, функционально тестирование роль этих генов оставалась сложной, как многие организмы, используемые для изучения эволюции признаков в настоящее время не генетически сговорчивым. Появление редактирования генома технологий значительно повышенной генетической манипулируемости широкого спектра организмов. Активатор транскрипции, как эффекторные нуклеазы (Таленс) и кластерные регулярно interspaced короткие палиндромные повторы (CRISPRs) использовались для генерации целевых мутации в генах , в ряде организмов (например , 4-11). Эти инструменты, применяемые к эволюционно соответствующей системы, имеют потенциал, чтобы революционизировать способ эволюционные биологи изучения генетической основы эволюции,

Astyanax mexicanus является одним из видов рыб , которые существует в двух формах:. Река обитающие формы поверхности (поверхностная рыба) и несколько пещерных форм (cavefish) А. mexicanus cavefish эволюционировали от поверхности рыбы предков (обзор в 12). Популяции cavefish развили ряд признаков , включая потерю глаз, снижение или потеря пигментации, увеличение числа вкусовых почек и черепно – мозговых невромастами, а также изменения в поведении , такие как потеря стайного поведения, повышенной агрессивности, изменения в кормлении позы и гиперфагию 13 -19. Cavefish и поверхность рыбы скрещиваться, и генетические эксперименты картирования были проведены для выявления локусов и генов – кандидатов для пещерных признаков 1,20-26. Некоторые гены – кандидаты были проверены на функциональную роль в содействии пещерных черты в культуре клеток 1,19, в модельных организмах других видов 21 или сверхэкспрессией 27 или транзиторной нокдаун ˙Uпеть Morpholinos 28 в А. mexicanus. Тем не менее, каждый из этих методов имеет свои ограничения. Способность генерировать мутантные аллели этих генов в A. mexicanus имеет решающее значение для понимания их функции в эволюции cavefish. Таким образом, А. mexicanus является идеальным кандидатом для применения организм редактирования генома технологий.

Здесь мы опишем метод для редактирования генома в A. mexicanus использованием Таленс. Этот метод может быть использован для оценки мозаики впрыскивается основателя рыбы для фенотипов и выделения линий рыбы со стабильными мутациями в генах , представляющих интерес 29.

Protocol

Все процедуры на животных были в соответствии с руководящими принципами Национальных институтов здоровья и были одобрены по уходу и использованию комитета Institutional животных в Университете штата Айова и Университете штата Мэриленд по. 1. Talen Design Входной желаемый це?…

Representative Results

Инъекции пара Talen приводит к связыванию RVDS до конкретных нуклеотидов ДНК и , таким образом димеризации доменов Foki, что приводит к двухцепочечных разрывов 39 , которые могут быть устранены через негомологичной конец присоединения (NHEJ). NHEJ часто вносит ошибки, к…

Discussion

Большие успехи были достигнуты в последние годы на пути к пониманию генетической основы эволюции признаков. В то время как гены – кандидаты , лежащие в основе эволюции ряда признаков были идентифицированы, он остается сложной задачей , чтобы проверить эти гены в естественных условиях…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа финансировалась Департаментом генетики, развития и клеточной биологии и Университета штата Айова и грант NIH EY024941 (WJ) .DR. Джеффри Essner представили свои замечания по рукописи.

Materials

Equipment
Thermocycler
Injection station
Gel apparatus
Needle puller
Nanodrop
Name Company Catalog Number Comments
Supplies
Note: As far as we know, supplies from different companies can be used unless otherwise indicated
Golden Gate TALEN and TAL Effector Kit 2.0 Addgene Kit #1000000024
Fisher BioReagents LB Agar, Miller (Granulated) Fisher BP9724-500
Fisher BioReagents Microbiology Media: LB Broth, Miller Fisher BP1426-500
Teknova TET-15 in 50% EtOH Teknova (ordered through Fisher) 50-843-314
Spectinomycin Dihydrochloride, Fisher BioReagents Fisher BP2957-1
Super Ampicillin (1000x solution) DNA Technologies 6060-1
ThermoScientific X-Gal Solution, ready-to-use Thermo Sci Fermentas Inc (Ordered through Fisher) FERR0941
IPTG, Fisher BioReagents Fisher BP1620-1
Petri dishes Fisher 08-757-13
BsaI New England Biolabs (ordered through Fisher) 50-812-203 Use BsaI, not BsaI-HF (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
BSA New England Biolabs provided with restriction enzymes
10x T4 ligase buffer Promega (ordered through Fisher) PR-C1263
GoTaq Green Master mix Promega (ordered through Fisher) PRM7123 Other Taq can be used, but the reaction should be adjusted accordingly
Quick ligation kit New England Biolabs (ordered through Fisher) 50-811-728 We use Quick Ligase for all TALEN assembly reactions
One Shot TOP10 Chemically Competent E.coli Invitrogen C4040-06 Other chemically competent cells or homemade competent cells can be used
Esp 3I Thermo Sci Fermentas Inc (Ordered through Fisher) FERER0451
Plasmid-Safe ATP-dependent DNase Epicentre (Ordered through Fisher) NC9046399
QIAprep Spin Miniprep Kit Qiagen 27106 The Qiagen kit should be used for the initial plasmid preparation (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
QIAquick PCR Purification Kit Qiagen 28104
GeneMate LE Quick Dissolve Agaraose BioExpress E-3119-125
Sac I Promega (Ordered through Fisher) PR-R6061
mMESSAGE mMACHINE T3 Transcription kit Ambion AM1348M
Rneasy MinElute Cleanup Kit Qiagen 74204
NorthernMax-Gly Sample Loading Dye  Ambion (ordered through Fisher) AM8551
Eliminase Decon (ordered through Fisher) 04-355-32
Fisherbrand Disposable Soda-Lime Glass Pasteur Pipets Fisher 13-678-6B
Standard Glass Capillaries World Precision Instruments 1B100-4
Microcaps Drummond Scientific Company 1-000-0010
Eppendorf Femtotips Microloader Tips for Femtojet Microinjector Eppendorf (ordered through Fisher) E5242956003
Sodium hydroxide Fisher S318-500
Tris base Fisher BP152-1

References

  1. Protas, M. E., et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 38 (1), 107-111 (2006).
  2. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A., Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 313 (5783), 101-104 (2006).
  3. Chan, Y. F., et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 327 (5963), 302-305 (2010).
  4. Liu, J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 39 (5), 209-215 (2012).
  5. Bannister, S., et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics. 197 (1), 77-89 (2014).
  6. Lei, Y., et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 109 (43), 17484-17489 (2012).
  7. Bedell, V. M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 491 (7422), 114-118 (2012).
  8. Huang, P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 29 (8), 699-700 (2011).
  9. Ansai, S., et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics. 193 (3), 739-749 (2013).
  10. Zhang, X., et al. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod. 91 (6), 136 (2014).
  11. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  12. Gross, J. B. The complex origin of Astyanax cavefish. BMC Evol Biol. 12, 105 (2012).
  13. Wilkens, H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) – support for the neutral mutation theory. Evolutionary Biology. 23, 271-367 (1988).
  14. Teyke, T. Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol. 35 (1), 23-30 (1990).
  15. Schemmel, C. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z Zool Syst Evolutionforsch. 12, 196-215 (1974).
  16. Burchards, H., Dolle, A., Parzefall, J. Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations. Behavioral Processes. 11, 225-235 (1985).
  17. Parzefall, J., Fricke, D. Alarm reaction and schooling in population hybrids of Astyanax fasciatus (Pisces, Characidae). Memoires e Biospeologie. , 29-32 (1991).
  18. Schemmel, C. Studies on the Genetics of Feeding Behavior in the Cave Fish Astyanax mexicanus F. anoptichthys. Z. Tierpsychol. 53, 9-22 (1980).
  19. Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L., Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A. 112 (31), 9668-9673 (2015).
  20. Protas, M., et al. Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev. 10 (2), 196-209 (2008).
  21. Gross, J. B., Borowsky, R., Tabin, C. J. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5 (1), e1000326 (2009).
  22. Yoshizawa, M., Yamamoto, Y., O’Quin, K. E., Jeffery, W. R. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 10, 108 (2012).
  23. Quin, K. E., Yoshizawa, M., Doshi, P., Jeffery, W. R. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 8 (2), 57281 (2013).
  24. Kowalko, J. E., et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A. 110 (42), 16933-16938 (2013).
  25. Kowalko, J. E., et al. Loss of Schooling Behavior in Cavefish through Sight-Dependent and Sight-Independent Mechanisms. Curr Biol. , (2013).
  26. Gross, J. B., Krutzler, A. J., Carlson, B. M. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics. 196 (4), 1303-1319 (2014).
  27. Yamamoto, Y., Stock, D. W., Jeffery, W. R. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 431 (7010), 844-847 (2004).
  28. Bilandzija, H., Ma, L., Parkhurst, A., Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 8 (11), e80823 (2013).
  29. Ma, L., Jeffery, W. R., Essner, J. J., Kowalko, J. E. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One. 10 (3), e0119370 (2015).
  30. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., Rozen, S. G. Primer3- new capabilities and interfaces. Nucleic Acids Res. 40 (15), 115 (2012).
  31. Koressaar, T., Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23 (10), 1289-1291 (2007).
  32. Cermak, T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), 82 (2011).
  33. . Addgene. Golden TALEN assembly Available from: https://www.addgene.org/static/cms/filer_public/98/5a/985a6117-7490-4001-8f6a-24b2cf7b005b/golden_gate_talen_assembly_v7.pdf (2011)
  34. A device to hold zebrafish embryos during microinjection. ZFIN Protocol Wiki Available from: https://wiki.zfin.org/display/prot/A+Device+To+Hold+Zebrafish+Embryos+During+Microinjection (2009)
  35. Hinaux, H., et al. A developmental staging table for Astyanax mexicanus surface fish and Pachon cavefish. Zebrafish. 8 (4), 155-165 (2011).
  36. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  37. Bitinaite, J., Wah, D. A., Aggarwal, A. K., Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 95 (18), 10570-10575 (1998).
  38. Elipot, Y., et al. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun. 5, 3647 (2014).
  39. McGaugh, S. E., et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 5, 5307 (2014).
  40. Yoshizawa, M., Goricki, S., Soares, D., Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 20 (18), 1631-1636 (2010).
  41. Blackburn, P. R., Campbell, J. M., Clark, K. J., Ekker, S. C. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish. 10 (1), 116-118 (2013).
  42. Varshney, G. K., et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042 (2015).
  43. Shin, J., Chen, J., Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818 (2014).
  44. Ablain, J., Durand, E. M., Yang, S., Zhou, Y., Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 32 (6), 756-764 (2015).
  45. Yamamoto, Y., Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289 (5479), 631-633 (2000).
check_url/54113?article_type=t

Play Video

Cite This Article
Kowalko, J. E., Ma, L., Jeffery, W. R. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J. Vis. Exp. (112), e54113, doi:10.3791/54113 (2016).

View Video