Summary

Genome redigering i<em> Astyanax mexicanus</em> Använda transkriptionsaktivator-liknande Effector nukleaser (Talens)

Published: June 20, 2016
doi:

Summary

Gene inriktning mutagenes är nu möjligt i ett brett spektrum av organismer med genomet redigeringstekniker. Här visar vi ett protokoll för målinriktad gen mutagenes med användning transkriptionsaktivator som effektor nukleaser (Talens) i Astyanax mexicanus, en fiskart som omfattar yta fisk och cavefish.

Abstract

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.

Introduction

Att förstå den genetiska grunden för drag utveckling är en kritisk forskning mål av evolutionsbiologer. Betydande framsteg har gjorts när det gäller att identifiera loci ligger till grund för utvecklingen av egenskaper och lokalisera kandidatgener inom dessa loci (t.ex. 1-3). Men funktionellt testa rollen av dessa gener har förblivit utmanande många organismer som används för att studera utvecklingen av egenskaper är för närvarande inte genetiskt lätthanterlig. Tillkomsten av genomet redigeringstekniker har i hög grad ökad genetisk manipulability av ett brett spektrum av organismer. Transkriptionsaktivator liknande effektor nukleaser (Talens) och klustrade regelbundet mellanrum korta palindromiska upprepningar (CRISPRs) har använts för att generera riktade mutationer i gener i ett antal organismer (till exempel 4-11). Dessa verktyg, som tillämpas på ett evolutionärt relevanta systemet har potential att revolutionera hur evolutionsbiologer studera den genetiska grunden för evolutionen.

Astyanax mexicanus är en fiskart som finns i två former: a. Flod bostad yta formen (ytan fisk) och flera grottlevande former (cavefish) A. mexicanus cavefish utvecklats från ytan fisk förfäder (översikt i 12). Populationer av cavefish har utvecklats ett antal egenskaper, inklusive förlust av ögon, minska eller förlust av pigmentering, ökat antal smaklökar och kraniala neuromasts, och förändringar i beteende såsom förlust av skolbeteende, ökad aggressivitet, förändringar i utfodring hållning och hyperfagi 13 -19. Cavefish och ytan fisk är interfertile, och genetiska kartläggningsexperiment har utförts för att identifiera loci och kandidatgener för grottdrag 1,20-26. Vissa gener har testats för en funktionell roll för att bidra till grott egenskaper i cellodling 1,19, i modellorganismer av andra arter 21 eller genom överuttryck 27 eller övergående knockdown usjunga morpholinos 28 i A. mexicanus. Emellertid har var och en av dessa metoder begränsningar. Förmågan att generera mutanta alleler av dessa gener i A. mexicanus är avgörande för att förstå deras funktion i utvecklingen av cavefish. Således, A. mexicanus är en idealisk kandidat organism för tillämpning av genomet redigering teknik.

Här redogör vi en metod för genom redigering i A. mexicanus använder Talens. Denna metod kan användas för att utvärdera mosaik injiceras grundare fisk för fenotyper och för att isolera rader av fisk med stabila mutationer i gener av intresse 29.

Protocol

Alla djurförsök var i enlighet med de riktlinjer för National Institutes of Health och har godkänts av Institutional Animal Care och användning kommittén vid Iowa State University och University of Maryland. 1. Talen Design Input önskade målsekvensen till en Talen konstruktion webbplats. (Till exempel: https://tale-nt.cac.cornell.edu/node/add/talen ). Ingång vald spacer / upprepade array längder. Kopie…

Representative Results

Talen par injektioner resulterar i bindningen av RVDs till specifika DNA-nukleotider och därmed dimerisering av Fokl domäner, vilket resulterar i dubbelsträngade avbrott 39 som kan repareras genom icke-homolog sammanfogning (NHEJ). NHEJ introducerar ofta fel som resulterar i insättningar eller deletioner (InDels). InDels kan identifieras genom att amplifiera regionen som omger Talen målstället och smälta den resulterande amplikon med ett restriktionsenzym som s…

Discussion

Stora framsteg har gjorts under de senaste åren mot att förstå den genetiska grunden för utvecklingen av egenskaper. Även kandidatgener ligger till grund för utvecklingen av ett antal egenskaper har identifierats, har det varit en utmaning att testa dessa gener in vivo på grund av bristen på genetisk spårbarhet mest evolutionärt intressanta arter. Här rapporterar vi en metod för genomet redigering i A. mexicanus, en art som används för att studera utvecklingen av grott djur. Genetisk kart…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Detta arbete har finansierats av Institutionen för genetik, utveckling och cellbiologi och Iowa State University och av NIH bidrag EY024941 (WJ) .Dr. Jeffrey Essner lämnade synpunkter på manuskriptet.

Materials

Equipment
Thermocycler
Injection station
Gel apparatus
Needle puller
Nanodrop
Name Company Catalog Number Comments
Supplies
Note: As far as we know, supplies from different companies can be used unless otherwise indicated
Golden Gate TALEN and TAL Effector Kit 2.0 Addgene Kit #1000000024
Fisher BioReagents LB Agar, Miller (Granulated) Fisher BP9724-500
Fisher BioReagents Microbiology Media: LB Broth, Miller Fisher BP1426-500
Teknova TET-15 in 50% EtOH Teknova (ordered through Fisher) 50-843-314
Spectinomycin Dihydrochloride, Fisher BioReagents Fisher BP2957-1
Super Ampicillin (1000x solution) DNA Technologies 6060-1
ThermoScientific X-Gal Solution, ready-to-use Thermo Sci Fermentas Inc (Ordered through Fisher) FERR0941
IPTG, Fisher BioReagents Fisher BP1620-1
Petri dishes Fisher 08-757-13
BsaI New England Biolabs (ordered through Fisher) 50-812-203 Use BsaI, not BsaI-HF (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
BSA New England Biolabs provided with restriction enzymes
10x T4 ligase buffer Promega (ordered through Fisher) PR-C1263
GoTaq Green Master mix Promega (ordered through Fisher) PRM7123 Other Taq can be used, but the reaction should be adjusted accordingly
Quick ligation kit New England Biolabs (ordered through Fisher) 50-811-728 We use Quick Ligase for all TALEN assembly reactions
One Shot TOP10 Chemically Competent E.coli Invitrogen C4040-06 Other chemically competent cells or homemade competent cells can be used
Esp 3I Thermo Sci Fermentas Inc (Ordered through Fisher) FERER0451
Plasmid-Safe ATP-dependent DNase Epicentre (Ordered through Fisher) NC9046399
QIAprep Spin Miniprep Kit Qiagen 27106 The Qiagen kit should be used for the initial plasmid preparation (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
QIAquick PCR Purification Kit Qiagen 28104
GeneMate LE Quick Dissolve Agaraose BioExpress E-3119-125
Sac I Promega (Ordered through Fisher) PR-R6061
mMESSAGE mMACHINE T3 Transcription kit Ambion AM1348M
Rneasy MinElute Cleanup Kit Qiagen 74204
NorthernMax-Gly Sample Loading Dye  Ambion (ordered through Fisher) AM8551
Eliminase Decon (ordered through Fisher) 04-355-32
Fisherbrand Disposable Soda-Lime Glass Pasteur Pipets Fisher 13-678-6B
Standard Glass Capillaries World Precision Instruments 1B100-4
Microcaps Drummond Scientific Company 1-000-0010
Eppendorf Femtotips Microloader Tips for Femtojet Microinjector Eppendorf (ordered through Fisher) E5242956003
Sodium hydroxide Fisher S318-500
Tris base Fisher BP152-1

References

  1. Protas, M. E., et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 38 (1), 107-111 (2006).
  2. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A., Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 313 (5783), 101-104 (2006).
  3. Chan, Y. F., et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 327 (5963), 302-305 (2010).
  4. Liu, J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 39 (5), 209-215 (2012).
  5. Bannister, S., et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics. 197 (1), 77-89 (2014).
  6. Lei, Y., et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 109 (43), 17484-17489 (2012).
  7. Bedell, V. M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 491 (7422), 114-118 (2012).
  8. Huang, P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 29 (8), 699-700 (2011).
  9. Ansai, S., et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics. 193 (3), 739-749 (2013).
  10. Zhang, X., et al. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod. 91 (6), 136 (2014).
  11. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  12. Gross, J. B. The complex origin of Astyanax cavefish. BMC Evol Biol. 12, 105 (2012).
  13. Wilkens, H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) – support for the neutral mutation theory. Evolutionary Biology. 23, 271-367 (1988).
  14. Teyke, T. Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol. 35 (1), 23-30 (1990).
  15. Schemmel, C. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z Zool Syst Evolutionforsch. 12, 196-215 (1974).
  16. Burchards, H., Dolle, A., Parzefall, J. Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations. Behavioral Processes. 11, 225-235 (1985).
  17. Parzefall, J., Fricke, D. Alarm reaction and schooling in population hybrids of Astyanax fasciatus (Pisces, Characidae). Memoires e Biospeologie. , 29-32 (1991).
  18. Schemmel, C. Studies on the Genetics of Feeding Behavior in the Cave Fish Astyanax mexicanus F. anoptichthys. Z. Tierpsychol. 53, 9-22 (1980).
  19. Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L., Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A. 112 (31), 9668-9673 (2015).
  20. Protas, M., et al. Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev. 10 (2), 196-209 (2008).
  21. Gross, J. B., Borowsky, R., Tabin, C. J. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5 (1), e1000326 (2009).
  22. Yoshizawa, M., Yamamoto, Y., O’Quin, K. E., Jeffery, W. R. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 10, 108 (2012).
  23. Quin, K. E., Yoshizawa, M., Doshi, P., Jeffery, W. R. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 8 (2), 57281 (2013).
  24. Kowalko, J. E., et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A. 110 (42), 16933-16938 (2013).
  25. Kowalko, J. E., et al. Loss of Schooling Behavior in Cavefish through Sight-Dependent and Sight-Independent Mechanisms. Curr Biol. , (2013).
  26. Gross, J. B., Krutzler, A. J., Carlson, B. M. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics. 196 (4), 1303-1319 (2014).
  27. Yamamoto, Y., Stock, D. W., Jeffery, W. R. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 431 (7010), 844-847 (2004).
  28. Bilandzija, H., Ma, L., Parkhurst, A., Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 8 (11), e80823 (2013).
  29. Ma, L., Jeffery, W. R., Essner, J. J., Kowalko, J. E. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One. 10 (3), e0119370 (2015).
  30. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., Rozen, S. G. Primer3- new capabilities and interfaces. Nucleic Acids Res. 40 (15), 115 (2012).
  31. Koressaar, T., Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23 (10), 1289-1291 (2007).
  32. Cermak, T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), 82 (2011).
  33. . Addgene. Golden TALEN assembly Available from: https://www.addgene.org/static/cms/filer_public/98/5a/985a6117-7490-4001-8f6a-24b2cf7b005b/golden_gate_talen_assembly_v7.pdf (2011)
  34. A device to hold zebrafish embryos during microinjection. ZFIN Protocol Wiki Available from: https://wiki.zfin.org/display/prot/A+Device+To+Hold+Zebrafish+Embryos+During+Microinjection (2009)
  35. Hinaux, H., et al. A developmental staging table for Astyanax mexicanus surface fish and Pachon cavefish. Zebrafish. 8 (4), 155-165 (2011).
  36. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  37. Bitinaite, J., Wah, D. A., Aggarwal, A. K., Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 95 (18), 10570-10575 (1998).
  38. Elipot, Y., et al. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun. 5, 3647 (2014).
  39. McGaugh, S. E., et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 5, 5307 (2014).
  40. Yoshizawa, M., Goricki, S., Soares, D., Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 20 (18), 1631-1636 (2010).
  41. Blackburn, P. R., Campbell, J. M., Clark, K. J., Ekker, S. C. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish. 10 (1), 116-118 (2013).
  42. Varshney, G. K., et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042 (2015).
  43. Shin, J., Chen, J., Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818 (2014).
  44. Ablain, J., Durand, E. M., Yang, S., Zhou, Y., Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 32 (6), 756-764 (2015).
  45. Yamamoto, Y., Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289 (5479), 631-633 (2000).
check_url/54113?article_type=t

Play Video

Cite This Article
Kowalko, J. E., Ma, L., Jeffery, W. R. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J. Vis. Exp. (112), e54113, doi:10.3791/54113 (2016).

View Video