Summary

纳米粒子 - 聚合物复合材料使用直接荧光成像的先进成分分析

Published: July 19, 2016
doi:

Summary

Here we present a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of cadmium selenide quantum dots can be accurately visualized through cross-sectional fluorescence imaging.

Abstract

The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials.

Introduction

纳米材料的应用曾长期担任增加对新技术感兴趣的一个领域。1-3这包括越来越多地使用的日常用品,包括化妆品,服装,包装,电子纳米粒子的4-6倾向于使用纳米颗粒的主要驱动器在功能性材料从较高相对于材料它们的反应性茎,除了在颗粒尺寸的能力来调整属性由变异7另一个优点是容易地形成的复合材料的能力,引入关键属性的基质,如催化功能材料的强化和电性能的调优。8-12

其中最简单的纳米颗粒-聚合物复合材料可通过一系列的技术来实现,是基质的制造过程中直接整合所需的纳米粒子。13,14该Results在均质材料均匀间距的纳米材料贯穿始终。然而,许多应用仅仅要求活性物质存在于纳米复合材料的外部接口。其结果是,直接掺入不导致有效地使用有时昂贵纳米材料作为存在通过散装的材料的多纳米颗粒废物。15,16为了实现直接掺入,纳米颗粒还必须与主体基质形成兼容。这可能是具有挑战性的,尤其是在要求多面的反应,如在通常由可以由高活性的纳米颗粒的影响金属配合物催化剂的机制促进热固性聚合物的情况下合成。14

聚合物合成过程中直接​​纳米粒子掺入相关联的相当大的缺点,已导致的技术旨在限制纳米颗粒incorporati发展到表面层。17-21胀大封装是在文献中报道的最成功的策略之一,以实现高的表面的纳米粒子的浓度,与在聚合物本体有限浪费。17-19该技术利用聚合物的溶剂从动溶胀矩阵,允许分子种类和纳米颗粒的侵入。在除去溶胀溶剂,在基质内的物种成为固定到位,以在表面局部物种的浓度最高。迄今为止,大多数膨胀包封的报道使用均朝向抗微生物聚合物的制造中,在那里它是关键的活性剂是在该材料的表面上。虽然许多这些报告显示增强的抗菌活性,精确的表面的纳米颗粒组合物进行详细很少探测。克里克等人最近证明为纳米粒子侵入的直接可视化的方法,提供了重要的INSIGHT成涌浪封装实现动力学和表面的纳米颗粒的浓度。22

这个工作详细硒化镉量子点(QD),其溶胀封装到聚二甲基硅氧烷(PDMS),并使用荧光成像它们掺入的直接可视化的合成。变溶胀封装时间和纳米粒子的浓度在溶胀溶液的效果进行了探索。荧光可视化技术允许纳米粒子侵入的直接成像到PDMS并表明量子点的最高浓度是在该材料的表面上。

Protocol

1.硒化镉/ ZnS核/壳量子点的制备 在三辛基的制备(TOP)-Se解决方案 通过在氮气下或者在手套箱硒适量混入TOP的Schlenk烧瓶(每个反应8需要毫升,通常为0.4克浓度在10毫升的TOP)制备硒的TOP中的0.5M的溶液。 搅拌该混合物以溶解硒1小时,从而在TOP-硒复合物的灰色溶液。 确保溶液然后冷冻 – 泵 – 解冻脱气5次。将所得储备溶液可以在氮气下储存3个月。 </…

Representative Results

量子点表现出红色荧光,与λ最大值的大约600纳米。22,28的红色发射是由于激子由量子棒,其大小尺寸的强约束状态中的限制。 Li等人表明,量子棒,发射移动到与增加宽度或所述杆的长度降低能源。他们进一步发现,发射主要由横向限制,即使当杆是很长的,特别是当宽度小于有问题,因为它是在强约束状态的材料的玻尔半径起着重要的作用来确定。29…

Discussion

Cross-sectional fluorescence imaging allows for direct visualization of nanoparticles during swell encapsulation. The kinetics of encapsulation has been shown, with the drive toward a high nanoparticle surface concentration demonstrated. The extent of nanoparticle incorporation is shown to vary with swell encapsulation time (described in section 2.3), with the total amount of incorporated nanoparticles increasing as this time is extended, with the particle concentration localized at the surface if the polymer samples are…

Disclosures

The authors have nothing to disclose.

Acknowledgements

C.R.C. would like to acknowledge the Ramsay Memorial Trust for funding.

Materials

Polydimethylsiloxane sheets NuSil Medical Grade
Oleylamine Sigma Aldrich O7805 Technical Grade
Trioctylphosphine Sigma Aldrich 117854 Technical Grade
Trioctylphosphine oxide Sigma Aldrich 346187 Technical Grade
1-Octadecene Sigma Aldrich O806 Technical Grade
Zinc diethyldithiocarbamate Sigma Aldrich 329703
Oleic acid Sigma Aldrich 364525 Technical Grade
Triethylamine Sigma Aldrich 471283
Cadmium oxide Alfa Aesar 33235
Hexadecylamine Alfa Aesar B22459 Technical Grade
1-Dodecylphosphonic acid Alfa Aesar H26259
Selenium powder Acros 19807
Chloroform Sigma Aldrich 366919
n-Hexane Sigma Aldrich 208752
Microscope slides VWR 631-0137 Thickness No. 1

References

  1. Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39 (11), 4146-4157 (2010).
  2. Zhang, Q., Uchaker, E., Candelaria, S. L., Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42 (7), 3127-3171 (2013).
  3. Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J. Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 24 (2), 229-251 (2012).
  4. Olson, M. S., Gurian, P. L. Risk assessment strategies as nanomaterials transition into commercial applications. J. Nanopart. Res. 14 (4), 1-7 (2012).
  5. Noimark, S., Dunnill, C. W., Parkin, I. P. Shining light on materials – A self-sterilising revolution. Adv. Drug Deliv. Rev. 65 (4), 570-580 (2013).
  6. Lavik, E., von Recum, H. The Role of Nanomaterials in Translational Medicine. ACS Nano. 5 (5), 3419-3424 (2011).
  7. Meier, J., Schiøtz, J., Liu, P., Nørskov, J. K., Stimming, U. Nano-scale effects in electrochemistry. Chem. Phys. Lett. 390 (4-6), 440-444 (2004).
  8. Booß-Bavnbek, B., Klösgen, B., Larsen, J., Pociot, F., Renström, E. BetaSys: Systems Biology of Regulated Exocytosis in Pancreatic ß-Cells. Springer Science & Business Media. , (2011).
  9. Xu, Z. P., Zeng, Q. H., Lu, G. Q., Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61 (3), 1027-1040 (2006).
  10. Ito, A., Shinkai, M., Honda, H., Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100 (1), 1-11 (2005).
  11. Xiu, F. -. R., Zhang, F. -. S. Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard. Mater. 233-234, 200-206 (2012).
  12. Ponja, S., et al. Aerosol assisted chemical vapour deposition of hydrophobic TiO2-SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem., A. 1 (20), 6271-6278 (2013).
  13. Crick, C. R., Bear, J. C., Kafizas, A., Parkin, I. P. Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Adv. Mater. 24 (26), 3505-3508 (2012).
  14. Crick, C. R., Bear, J. C., Southern, P., Parkin, I. P. A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition. J. Mater. Chem., A. 1 (13), 4336-4344 (2013).
  15. Jensen, G. C., Krause, C. E., Sotzing, G. A., Rusling, J. F. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys. Chem. Chem. Phys. 13 (11), 4888-4894 (2011).
  16. Steigerwald, A., Mu, R. Potential of pulsed electron-beam deposition for nanomaterial fabrication: Spatial distribution of deposited materials. J. Vac. Sci. Technol., B. 26 (3), 1001-1005 (2008).
  17. Perni, S., et al. Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes. J. Cluster Sci. 21 (3), 427-438 (2010).
  18. Perni, S., et al. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomater. 30 (1), 89-93 (2009).
  19. Noimark, S., et al. Dual-Mechanism Antimicrobial Polymer-ZnO Nanoparticle and Crystal Violet-Encapsulated Silicone. Adv. Func. Mater. 25 (9), 1367-1373 (2015).
  20. Gingery, D., Bühlmann, P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon. 46 (14), 1966-1972 (2008).
  21. Abdelmoti, L. G., Zamborini, F. P. Potential-Controlled Electrochemical Seed-Mediated Growth of Gold Nanorods Directly on Electrode Surfaces. Langmuir. 26 (16), 13511-13521 (2010).
  22. Crick, C. R., et al. Advanced analysis of nanoparticle composites – a means toward increasing the efficiency of functional materials. RSC Adv. 5 (66), 53789-53795 (2015).
  23. Solvas, X. C., Turek, V., Prodromakis, T., Edel, J. B. Microfluidic evaporator for on-chip sample concentration. Lab Chip. 12 (20), 4049-4054 (2012).
  24. Solvas, X. C., et al. Fluorescence detection methods for microfluidic droplet platforms. J. Vis. Exp. (58), e3437 (2011).
  25. Köllner, M., et al. Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations. Chem. Phys. Lett. 250 (3-4), 355-360 (1996).
  26. Köllner, M., Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements. Chem. Phys. Lett. 200 (1-2), 199-204 (1992).
  27. Edel, J. B., Eid, J. S., Meller, A. Accurate Single Molecule FRET Efficiency Determination for Surface Immobilized DNA Using Maximum Likelihood Calculated Lifetimes. J. Phys. Chem., B. 111 (11), 2986-2990 (2007).
  28. Bear, J. C., et al. Doping Group IIB Metal Ions into Quantum Dot Shells via the One-Pot Decomposition of Metal-Dithiocarbamates. Adv. Opt. Mater. 3 (5), 704-712 (2015).
  29. Li, L., Hu, J., Yang, W., Alivisatos, A. P. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters. 1 (7), 349-351 (2001).

Play Video

Cite This Article
Crick, C. R., Noimark, S., Peveler, W. J., Bear, J. C., Ivanov, A. P., Edel, J. B., Parkin, I. P. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. J. Vis. Exp. (113), e54178, doi:10.3791/54178 (2016).

View Video