Summary

Avanceret analyse af sammensætningen af ​​nanopartiklers-polymer Composites Brug Direct Fluorescens Imaging

Published: July 19, 2016
doi:

Summary

Here we present a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of cadmium selenide quantum dots can be accurately visualized through cross-sectional fluorescence imaging.

Abstract

The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials.

Introduction

Anvendelsen af nanomaterialer har længe fungeret som et område med stigende interesse for nye teknologier. 1-3 Dette har omfattet den stigende anvendelse af nanopartikler i dagligvarer, herunder kosmetik, tøj, emballage og elektronik. 4-6 En stor drev mod brug af nanopartikler i funktionelle materialer skyldes deres højere reaktivitet i forhold til materialerne, ud over evnen til at tune egenskaber ved variation i partikelstørrelsen. 7 En yderligere fordel er evnen til nemt at danne kompositmaterialer, indføre afgørende egenskaber til værten matrix, såsom katalytisk funktionalitet, materiale styrkelse og tuning af elektriske egenskaber. 8-12

Nanopartikel-polymer kompositmaterialer kan opnås gennem en række teknikker, er den enkleste af hvilke er direkte integration af de ønskede nanopartikler under fremstillingen af værten matrix. 13,14 Denne resultater i et homogent materiale med en jævn afstand på nanopartikel materiale hele vejen igennem. Men mange programmer kræver kun det aktive materiale at være til stede ved de ydre grænseflader nanokompositter. Som følge heraf tager direkte inkorporering ikke medføre effektiv udnyttelse af undertiden kostbar nanopartikel materiale som der er meget nanopartikel affald gennem størstedelen af materialet. 15,16 at opnå direkte inkorporering, nanopartiklerne skal også være kompatible med vært matrixdannelse. Dette kan være en udfordring, især i synteser, der kræver mangefacetterede reaktioner såsom i tilfældet med termohærdende polymerer, der typisk lettere ved metalkompleksfarvestoffer katalysatorer mekanismer, der kan blive påvirket af yderst aktive nanopartikler. 14

De betydelige ulemper forbundet med direkte nanopartikel inkorporering under polymersyntese, har ført til udvikling af teknikker til formål at begrænse nanopartikel incorporatipå overfladelaget. 17-21 Swell indkapsling er en af de mest succesfulde strategier er rapporteret i litteraturen, for at opnå høje overfladetemperaturer nanopartikel koncentrationer, med begrænset spild i polymeren bulk. 17-19 Teknikken udnytter opløsningsmidlet drevne hævelse af polymer matricer, hvilket tillader indtrængen af ​​molekylære arter og nanopartikler. Ved fjernelse af hævelse opløsningsmiddel, bliver de arter i matrixen fikseret på plads, med den højeste koncentration af arter lokaliseret ved overfladen. Til dato er de fleste af de rapporterede anvendelser af swell indkapsling rettet mod fremstillingen af ​​antimikrobielle polymerer, hvor det er afgørende, at de aktive midler er i materialets overflade. Mens mange af disse rapporter viser forøget antimikrobiel aktivitet, er den præcise overflade nanopartikel sammensætning sjældent probet i detaljer. Crick et al. Nylig demonstreret en fremgangsmåde til direkte visualisering af nanopartikel indtrængen, giver afgørende insight i kinetikken og overflade nanopartikel koncentrationer, der opnås ved dønninger indkapsling. 22

Dette arbejde beskriver syntesen af ​​cadmium selenid kvantepunkter (QD), deres svulme indkapsling i polydimethylsiloxan (PDMS) og den direkte visualisering af deres inkorporering anvendelse af fluorescens billeddannelse. Virkningen af ​​at variere swell indkapsling tid og nanopartikel koncentration i hævelse opløsning udforsket. Fluorescensen visualisering teknik giver mulighed for direkte billeddannelse af nanopartikel angreb ind PDMS og viser, at den højeste koncentration af QDs er på materialeoverfladen.

Protocol

1. Fremstilling af CdSe / ZnS Core / Shell Quantum Dots Forberedelse af trioctylphosphine (TOP) -Se løsning Der fremstilles en 0,5 M opløsning af selen i TOP ved at blande den passende mængde af Se i TOP i en Schlenk-kolbe under nitrogen eller i en handskekasse (8 ml kræves per reaktion, typisk 0,4 g opløst i 10 ml TOP). Omrør blandingen for at opløse Se i 1 time, hvilket resulterer i en grå opløsning af TOP-Se-komplekset. Kontroller, at opløsningen dere…

Representative Results

Kvantepunkterne udviste rød fluorescens, med en lambda max på ca. 600 nm. 22,28 Den røde emissionen skyldes indeslutning af exciton ved kvante stang, hvis størrelse dimensioner ligger inden for det stærke indespærring regime. Li et al. Viste, at for quantum stænger, til emissions- skift sænke energi med en stigning i enten bredden eller længden af stangen. De har endvidere vist, at emissionen hovedsagelig bestemt af den laterale indeslutning, som spiller en v…

Discussion

Cross-sectional fluorescence imaging allows for direct visualization of nanoparticles during swell encapsulation. The kinetics of encapsulation has been shown, with the drive toward a high nanoparticle surface concentration demonstrated. The extent of nanoparticle incorporation is shown to vary with swell encapsulation time (described in section 2.3), with the total amount of incorporated nanoparticles increasing as this time is extended, with the particle concentration localized at the surface if the polymer samples are…

Disclosures

The authors have nothing to disclose.

Acknowledgements

C.R.C. would like to acknowledge the Ramsay Memorial Trust for funding.

Materials

Polydimethylsiloxane sheets NuSil Medical Grade
Oleylamine Sigma Aldrich O7805 Technical Grade
Trioctylphosphine Sigma Aldrich 117854 Technical Grade
Trioctylphosphine oxide Sigma Aldrich 346187 Technical Grade
1-Octadecene Sigma Aldrich O806 Technical Grade
Zinc diethyldithiocarbamate Sigma Aldrich 329703
Oleic acid Sigma Aldrich 364525 Technical Grade
Triethylamine Sigma Aldrich 471283
Cadmium oxide Alfa Aesar 33235
Hexadecylamine Alfa Aesar B22459 Technical Grade
1-Dodecylphosphonic acid Alfa Aesar H26259
Selenium powder Acros 19807
Chloroform Sigma Aldrich 366919
n-Hexane Sigma Aldrich 208752
Microscope slides VWR 631-0137 Thickness No. 1

References

  1. Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39 (11), 4146-4157 (2010).
  2. Zhang, Q., Uchaker, E., Candelaria, S. L., Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42 (7), 3127-3171 (2013).
  3. Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J. Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 24 (2), 229-251 (2012).
  4. Olson, M. S., Gurian, P. L. Risk assessment strategies as nanomaterials transition into commercial applications. J. Nanopart. Res. 14 (4), 1-7 (2012).
  5. Noimark, S., Dunnill, C. W., Parkin, I. P. Shining light on materials – A self-sterilising revolution. Adv. Drug Deliv. Rev. 65 (4), 570-580 (2013).
  6. Lavik, E., von Recum, H. The Role of Nanomaterials in Translational Medicine. ACS Nano. 5 (5), 3419-3424 (2011).
  7. Meier, J., Schiøtz, J., Liu, P., Nørskov, J. K., Stimming, U. Nano-scale effects in electrochemistry. Chem. Phys. Lett. 390 (4-6), 440-444 (2004).
  8. Booß-Bavnbek, B., Klösgen, B., Larsen, J., Pociot, F., Renström, E. BetaSys: Systems Biology of Regulated Exocytosis in Pancreatic ß-Cells. Springer Science & Business Media. , (2011).
  9. Xu, Z. P., Zeng, Q. H., Lu, G. Q., Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61 (3), 1027-1040 (2006).
  10. Ito, A., Shinkai, M., Honda, H., Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100 (1), 1-11 (2005).
  11. Xiu, F. -. R., Zhang, F. -. S. Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard. Mater. 233-234, 200-206 (2012).
  12. Ponja, S., et al. Aerosol assisted chemical vapour deposition of hydrophobic TiO2-SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem., A. 1 (20), 6271-6278 (2013).
  13. Crick, C. R., Bear, J. C., Kafizas, A., Parkin, I. P. Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Adv. Mater. 24 (26), 3505-3508 (2012).
  14. Crick, C. R., Bear, J. C., Southern, P., Parkin, I. P. A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition. J. Mater. Chem., A. 1 (13), 4336-4344 (2013).
  15. Jensen, G. C., Krause, C. E., Sotzing, G. A., Rusling, J. F. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys. Chem. Chem. Phys. 13 (11), 4888-4894 (2011).
  16. Steigerwald, A., Mu, R. Potential of pulsed electron-beam deposition for nanomaterial fabrication: Spatial distribution of deposited materials. J. Vac. Sci. Technol., B. 26 (3), 1001-1005 (2008).
  17. Perni, S., et al. Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes. J. Cluster Sci. 21 (3), 427-438 (2010).
  18. Perni, S., et al. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomater. 30 (1), 89-93 (2009).
  19. Noimark, S., et al. Dual-Mechanism Antimicrobial Polymer-ZnO Nanoparticle and Crystal Violet-Encapsulated Silicone. Adv. Func. Mater. 25 (9), 1367-1373 (2015).
  20. Gingery, D., Bühlmann, P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon. 46 (14), 1966-1972 (2008).
  21. Abdelmoti, L. G., Zamborini, F. P. Potential-Controlled Electrochemical Seed-Mediated Growth of Gold Nanorods Directly on Electrode Surfaces. Langmuir. 26 (16), 13511-13521 (2010).
  22. Crick, C. R., et al. Advanced analysis of nanoparticle composites – a means toward increasing the efficiency of functional materials. RSC Adv. 5 (66), 53789-53795 (2015).
  23. Solvas, X. C., Turek, V., Prodromakis, T., Edel, J. B. Microfluidic evaporator for on-chip sample concentration. Lab Chip. 12 (20), 4049-4054 (2012).
  24. Solvas, X. C., et al. Fluorescence detection methods for microfluidic droplet platforms. J. Vis. Exp. (58), e3437 (2011).
  25. Köllner, M., et al. Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations. Chem. Phys. Lett. 250 (3-4), 355-360 (1996).
  26. Köllner, M., Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements. Chem. Phys. Lett. 200 (1-2), 199-204 (1992).
  27. Edel, J. B., Eid, J. S., Meller, A. Accurate Single Molecule FRET Efficiency Determination for Surface Immobilized DNA Using Maximum Likelihood Calculated Lifetimes. J. Phys. Chem., B. 111 (11), 2986-2990 (2007).
  28. Bear, J. C., et al. Doping Group IIB Metal Ions into Quantum Dot Shells via the One-Pot Decomposition of Metal-Dithiocarbamates. Adv. Opt. Mater. 3 (5), 704-712 (2015).
  29. Li, L., Hu, J., Yang, W., Alivisatos, A. P. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters. 1 (7), 349-351 (2001).
check_url/54178?article_type=t

Play Video

Cite This Article
Crick, C. R., Noimark, S., Peveler, W. J., Bear, J. C., Ivanov, A. P., Edel, J. B., Parkin, I. P. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. J. Vis. Exp. (113), e54178, doi:10.3791/54178 (2016).

View Video