Summary

昆虫・マシン・ハイブリッドシステム:自由フライングビートルのリモートラジオコントロール(<em> Mercynorrhina torquata</em>)

Published: September 02, 2016
doi:

Summary

This protocol describes the process of constructing an insect-machine hybrid system and carrying out wireless electrical stimulation of the flight muscles required to control the turning motion of a flying insect.

Abstract

ラジオ対応のデジタル電子機器の上昇は、飛行中の昆虫の行動を研究するための小型無線神経筋レコーダーや刺激物質の使用を促してきました。この技術は、このプロトコルで説明住む昆虫プラットフォームを用いて、昆虫・マシン・ハイブリッドシステムの開発を可能にします。また、このプロトコルは、システム構成や命綱をつけ昆虫における飛翔筋の機能を評価するための自​​由飛行実験手順を説明します。デモンストレーションのために、私たちは飛んでカブトムシの左または右回転を制御し、達成するための第三の腋窩骨片(3AX)筋肉をターゲットに。細い銀線電極は、カブトムシの各側の3AX筋に移植しました。これらは、甲虫の前胸背板に取り付けられた。無線バックパック( すなわち 、神経筋電気刺激装置)の出力に接続されていました筋肉は、(左または右)の刺激の側を交互にまたはstimulatioを変えることによって自由飛行で刺激しました。n個の周波数。カブトムシは、筋肉が刺激されたときに同側になって、周波数の増加に段階的な応答を示しました。注入プロセスおよび3次元モーションキャプチャカメラシステムの容積キャリブレーションは、それぞれ、筋肉を損傷し、マーカの追跡が失われないように注意して行う必要があります。それは自由飛行に関心の飛翔筋の機能を明らかにするのに役立つように、この方法は、昆虫の飛行を研究するために非常に有益です。

Introduction

An insect-machine hybrid system, often referred to as a cyborg insect or biobot, is the fusion of a living insect platform with a miniature mounted electronic device. The electronic device, which is wirelessly commanded by a remote user, outputs an electrical signal to electrically stimulate neuromuscular sites in the insect via implanted wire electrodes to induce user desired motor actions and behaviors. In the early stages of this research field, researchers were limited to conducting wireless recording of the muscular action of an insect, using simple analog circuits comprised of surface-mounted components1-3. The development of system-on-a-chip technology with radio frequency functionality enabled not only the wireless recording of neuromuscular signals but also the electrical stimulation of the neuromuscular sites in living insects. At present, a built-in radio microcontroller is small enough to be mounted on living insects without causing any obstructions to their locomotion4-13.

The development of the built-in radio microcontroller allows researchers to determine electrical stimulation protocols to induce desired motor actions to control the locomotion of the insect of interest. On the ground, researchers have demonstrated walking control by stimulating the neuromuscular sites of cockroaches4,12,14, spiders15, and beetles16,17. In the air, the initiation and cessation of flight were achieved using different methods such as the stimulation of the optic lobes (the massive neural cluster of a compound eye) in beetles7,9 and brain sub-regions in bees18, whereas turning control has been demonstrated by stimulating the antennae muscles and nervous system of the abdomens in moths11,19 and the flight muscles of beetles7,9,13. In most cases, a built-in radio microcontroller was integrated on a custom-designed printed circuit board to produce a miniature wireless stimulator (backpack), which was mounted on the insect of interest. This allows wireless electrical stimulation to be applied to a freely walking or flying insect. Such a microcontroller-mounted insect is what is referred to as an insect-machine hybrid system.

This study describes the experimental protocols for building an insect-machine hybrid system, wherein a living beetle is employed as the insect platform, and instructs on how to operate the robot and test its flight control systems. The third axillary sclerite (3Ax) muscle was chosen as the muscle of interest for electrical stimulation and demonstration of left or right turning control13. A pair of thin silver wire electrodes was implanted in both the left and right 3Ax muscles. Moreover, a backpack was mounted on the living beetle. The other ends of the wire electrode were connected to the output pins of the microcontroller. The backpack was small enough for the beetle to carry in flight. Thus, this allows an experimentalist to remotely stimulate the muscle of interest of an insect in free flight and investigate its reactions to the stimulations.

Protocol

1.研究動物リア個々Mecynorrhinaのtorquataカブトムシ木質ペレット寝具付きの独立したプラスチック容器(6センチ、8グラム)。 3日毎に各カブトムシに砂糖ゼリー(12ミリリットル)のカップをフィード。 それぞれ、25℃、60%で飼育室の温度と湿度を保ちます。 細線電極を埋め込む前に、各カブトムシの飛行能力をテストします。 静かに空気中にカブトムシを…

Representative Results

電極の移植手順は、 図2に示されているシン・銀線電極を筋肉( 図2dの – E)のソフトキューティクルに穴を開け、小さな穴を通してカブトムシの3AX筋に移植しました。このソフトキューティクルはmetepisternum( – C 図2D)の前方部分を除去した後、ちょうどbasalar筋肉の内突起の上に発見されました。電極は…

Discussion

それは、実験の信頼性に影響を与えるような注入プロセスは、重要です。電極は、(近くの筋肉との接触を回避する)甲虫のサイズに応じて、3mm以下の深さで筋肉に挿入する必要があります。電極は近くの筋肉をタッチすると、望ましくないモータの行動や行動は、近くの筋肉の収縮により発生する可能性があります。 2つの電極はよくない短絡が発生しないことを確実にするために整列さ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This material is based on the works supported by Nanyang Assistant Professorship (NAP, M4080740), Agency for Science, Technology and Research (A*STAR) Public Sector Research Funding (PSF, M4070190), A*STAR-JST (The Japan Science and Technology Agency) joint grant (M4070198), and Singapore Ministry of Education (MOE2013-T2-2-049). The authors would like to thank Mr. Roger Tan Kay Chia, Prof. Low Kin Huat, Mr. Poon Kee Chun, Mr. Chew Hock See, Mr. Lam Kim Kheong and Dr. Mao Shixin at School of MAE for their support in setting up and maintaining the research facilities. The authors thank Prof. Michel Maharbiz (U.C. Berkeley) his advice and discussion, Prof. Kris Pister and his group (U.C. Berkeley) for their support in providing the GINA used in this study.

Materials

Mecynorrhina torquata beetle Kingdom of Beetle Taiwan 10 g, 8 cm, pay load capacity is 30% of the body mass
Aproval of importing and using by Agri-Food and Veterinary Authority of Singapore (AVA; HS code: 01069000, product code: ALV002).
Wireless backpack stimulator Custom TI CC2431 micocontroler
The board is custom made based on the GINA board from Prof. Kris Pister’s lab. The layout of GINA board can be found at    https://openwsn.atlassian.net/wiki/display/OW/GINA
Wii Remote control Nintendo Bluetooth remote control to send the command to the operator laptop
BeetleCommander v1.8 Custom. Maharbiz group at UC Berkeley and Sato group at NTU Establish the wireless communication of the backpack and the operator laptop. Configure the stimulus parameters and log the positional data. Visualize the flight data.
GINA base station Kris Pister group at UC Berkeley TI MSP430F2618 and AT86RF231
Motion capture system VICON T160 8 cameras for a flight arena of 12.5 x 8 x 4 m
Motion capture system VICON T40s 12 cameras for a flight arena of 12.5 x 8 x 4 m
Micro battery Fullriver  201013HS10C  3.7V, 10 mAh
Retro reflective tape Reflexite V92-1549-010150 V92 reflective tape, silver color
PFA-Insulated Silver Wire  A-M systems 786000 127 µm bare, 177.8 µm coated, 3 mm bare silver flame exposed at tips
SMT Micro Header  SAMTEC FTSH-110-01-L-DV 0.3 x 6 mm, bend to make a 3 mm long slider to secure the electrode into the PCB header.
Beeswax Secure the electrodes
Dental Wax Vertex Immobilize the beetle
Insect pin ROBOZ RS-6082-30 Size  00; 0.3mm Rod diameter; 0.03 mm tip width; 38 mm Length 
Make electrode guiding holes on cuticle
Tweezers DUMONT RS-5015 Pattern #5; .05 X .01mm Tip Size; 110mm Length
Dissecting and implantation
Scissors ROBOZ RS-5620 Vannas Micro Dissecting Spring Scissors; Straight; 3mm Cutting Edge; 0.1mm Tip Width; 3" Overall Length 
Dissecting and implantation
Potable soldering iron DAIYO DS241 Reflow beeswax
Hotplate  CORNING PC-400D Melting beeswax and dental wax
Flourescent lamp Philips TL5 14W Light the entire flight arena with 30 panels (60 x 60 cm2). Each panel has 3 lamps.
14 W, 549 mm x 17 mm 

References

  1. Kutsch, W., Schwarz, G., Fischer, H., Kautz, H. Wireless Transmission of Muscle Potentials During Free Flight of a Locust. J. Exp. Biol. 185 (1), 367-373 (1993).
  2. Fischer, H., Kautz, H., Kutsch, W. A Radiotelemetric 2-Channel Unit for Transmission of Muscle Potentials During Free Flight of the Desert Locust, Schistocerca Gregaria. J. Neurosci. Methods. 64 (1), 39-45 (1996).
  3. Ando, N., Shimoyama, I., Kanzaki, R. A Dual-Channel FM Transmitter for Acquisition of Flight Muscle Activities from the Freely Flying Hawkmoth, Agrius Convolvuli. J. Neurosci. Methods. 115 (2), 181-187 (2002).
  4. Sanchez, C. J., et al. Locomotion control of hybrid cockroach robots. J. R. Soc. Interface. 12 (105), (2015).
  5. Sato, H., et al. A cyborg beetle: insect flight control through an implantable, tetherless microsystem. , 164-167 (2008).
  6. Bozkurt, A., Gilmour, R. F., Lal, A. Balloon-Assisted Flight of Radio-Controlled Insect Biobots. IEEE Trans. Biomed. Eng. 56 (9), 2304-2307 (2009).
  7. Sato, H., et al. Remote Radio Control of Insect Flight. Front. Neurosci. 3, (2009).
  8. Daly, D. C., et al. A Pulsed UWB Receiver SoC for Insect Motion Control. IEEE J. Solid-State Circuits. 45 (1), 153-166 (2010).
  9. Maharbiz, M. M., Sato, H. Cyborg Beetles. Sci. Am. 303 (6), 94-99 (2010).
  10. Tsang, W. M., et al. Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe. , 39-42 (2010).
  11. Hinterwirth, A. J., et al. Wireless Stimulation of Antennal Muscles in Freely Flying Hawkmoths Leads to Flight Path Changes. PloS ONE. 7 (12), (2012).
  12. Whitmire, E., Latif, T., Bozkurt, A. Kinect-based system for automated control of terrestrial insect biobots. , 1470-1473 (2013).
  13. Sato, H., et al. Deciphering the Role of a Coleopteran Steering Muscle via Free Flight Stimulation. Curr. Biol. 25 (6), 798-803 (2015).
  14. Erickson, J. C., Herrera, M., Bustamante, M., Shingiro, A., Bowen, T. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot. PLoS ONE. 10 (8), e0134348 (2015).
  15. Zhaolin, Y., et al. A preliminary study of motion control patterns for biorobotic spiders. , 128-132 (2014).
  16. Feng, C., Chao, Z., Hao Yu, C., Sato, H. Insect-machine hybrid robot: Insect walking control by sequential electrical stimulation of leg muscles. , 4576-4582 (2015).
  17. Cao, F., et al. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles. PLoS ONE. 9 (8), e105389 (2014).
  18. Zhao, H., et al. Neuromechanism Study of Insect-Machine Interface: Flight Control by Neural Electrical Stimulation. PLoS ONE. 9 (11), e113012 (2014).
  19. Tsang, W. M., et al. Flexible Split-Ring Electrode for Insect Flight Biasing Using Multisite Neural Stimulation. IEEE Trans. Biomed. Eng. 57 (7), 1757-1764 (2010).
  20. Barron, A. B. Anaesthetising Drosophila for behavioural studies. J. Insect Physiol. 46 (4), 439-442 (2000).
  21. Cooper, J. E. Anesthesia, Analgesia, and Euthanasia of Invertebrates. ILAR Journal. 52 (2), 196-204 (2011).
  22. Miller, T. A. . Insect neurophysiological techniques. , (2012).
  23. Leary, S., et al. . AVMA guidelines for the euthanasia of animals. , (2013).
  24. Heath, B., West, G., Heard, D., Caulkett, N. Mobile Inhalant Anesthesia Techniques. in Zoo Animal and Wildlife Immobilization and Anesthesia. , 75-80 (2008).
  25. Mischiati, M., et al. Internal models direct dragonfly interception steering. Nature. 517 (7534), 333-338 (2015).
  26. Kutsch, W., Berger, S., Kautz, H. Turning Manoeuvres in Free-Flying Locusts: Two-Channel Radio-Telemetric Transmission of Muscle Activity. J. Exp. Zoolog. Part A Comp. Exp. Biol. 299 (2), 139-150 (2003).
  27. Wang, H., Ando, N., Kanzaki, R. Active Control of Free Flight Manoeuvres in a Hawkmoth, Agrius Convolvuli. J. Exp. Biol. 211 (3), 423-432 (2008).
  28. Sato, H., Maharbiz, M. M. Recent developments in the remote radio control of insect flight. Front. Neurosci. 4, (2010).
  29. Tien Van, T., et al. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation. Bioinsp. Biomim. 7 (3), 036021 (2012).
  30. Sane, S. P., Dickinson, M. H. The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204 (15), 2607-2626 (2001).
  31. de Croon, G. C., et al. Design, aerodynamics and autonomy of the DelFly. Bioinsp. Biomim. 7 (2), 025003 (2012).
  32. Ma, K. Y., Chirarattananon, P., Fuller, S. B., Wood, R. J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science. 340 (6132), 603-607 (2013).
check_url/54260?article_type=t

Play Video

Cite This Article
Vo Doan, T. T., Sato, H. Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina torquata). J. Vis. Exp. (115), e54260, doi:10.3791/54260 (2016).

View Video