Summary

Insect-máquina Sistema Híbrido: Controle de rádio remoto de um Beetle Livremente Aeronáutica (<em> Torquata Mercynorrhina</em>)

Published: September 02, 2016
doi:

Summary

This protocol describes the process of constructing an insect-machine hybrid system and carrying out wireless electrical stimulation of the flight muscles required to control the turning motion of a flying insect.

Abstract

A ascensão de aparelhos eletrônicos digitais habilitados para rádio fez com que o uso de pequenos gravadores neuromusculares sem fio e estimuladores para estudar o comportamento de insetos em voo. Esta tecnologia permite o desenvolvimento de um sistema híbrido de inseto-máquina, utilizando uma plataforma de insetos vivendo descrito neste protocolo. Além disso, este protocolo apresenta a configuração do sistema e procedimentos experimentais de vôo livre para avaliar a função dos músculos do vôo em um inseto untethered. Para demonstração, alvo do músculo terceira axilar sclerite (3AX) para controlar e conseguir virar à esquerda ou à direita de um besouro voando. Um eléctrodo de fio de prata fina foi implantado no músculo 3ax em cada lado do besouro. Estes foram ligados às saídas de uma mochila sem fio (isto é, um estimulador eléctrico neuromuscular) montado no pronotum do besouro. O músculo foi estimulado em vôo livre, alternando o lado estimulação (esquerda ou direita) ou variando a stimulatiofrequência n. O besouro virado para o lado ipsilateral quando o músculo foi estimulado e exibiu uma resposta gradual para uma frequência cada vez maior. O processo de implantação e calibragem do volume do movimento sistema de câmera captura 3 dimensional precisa ser realizada com cuidado para evitar danos ao músculo e perder de vista o marcador, respectivamente. Este método é altamente benéfico para estudar vôo de insetos, uma vez que ajuda a revelar as funções do músculo do vôo de interesse em vôo livre.

Introduction

An insect-machine hybrid system, often referred to as a cyborg insect or biobot, is the fusion of a living insect platform with a miniature mounted electronic device. The electronic device, which is wirelessly commanded by a remote user, outputs an electrical signal to electrically stimulate neuromuscular sites in the insect via implanted wire electrodes to induce user desired motor actions and behaviors. In the early stages of this research field, researchers were limited to conducting wireless recording of the muscular action of an insect, using simple analog circuits comprised of surface-mounted components1-3. The development of system-on-a-chip technology with radio frequency functionality enabled not only the wireless recording of neuromuscular signals but also the electrical stimulation of the neuromuscular sites in living insects. At present, a built-in radio microcontroller is small enough to be mounted on living insects without causing any obstructions to their locomotion4-13.

The development of the built-in radio microcontroller allows researchers to determine electrical stimulation protocols to induce desired motor actions to control the locomotion of the insect of interest. On the ground, researchers have demonstrated walking control by stimulating the neuromuscular sites of cockroaches4,12,14, spiders15, and beetles16,17. In the air, the initiation and cessation of flight were achieved using different methods such as the stimulation of the optic lobes (the massive neural cluster of a compound eye) in beetles7,9 and brain sub-regions in bees18, whereas turning control has been demonstrated by stimulating the antennae muscles and nervous system of the abdomens in moths11,19 and the flight muscles of beetles7,9,13. In most cases, a built-in radio microcontroller was integrated on a custom-designed printed circuit board to produce a miniature wireless stimulator (backpack), which was mounted on the insect of interest. This allows wireless electrical stimulation to be applied to a freely walking or flying insect. Such a microcontroller-mounted insect is what is referred to as an insect-machine hybrid system.

This study describes the experimental protocols for building an insect-machine hybrid system, wherein a living beetle is employed as the insect platform, and instructs on how to operate the robot and test its flight control systems. The third axillary sclerite (3Ax) muscle was chosen as the muscle of interest for electrical stimulation and demonstration of left or right turning control13. A pair of thin silver wire electrodes was implanted in both the left and right 3Ax muscles. Moreover, a backpack was mounted on the living beetle. The other ends of the wire electrode were connected to the output pins of the microcontroller. The backpack was small enough for the beetle to carry in flight. Thus, this allows an experimentalist to remotely stimulate the muscle of interest of an insect in free flight and investigate its reactions to the stimulations.

Protocol

1. animal Estudo besouros traseiros individuais Mecynorrhina torquata (6 cm, 8 g) em recipientes de plástico separados com cama de aglomerados de madeira. Alimentar cada besouro um copo de geléia de açúcar (12 ml) a cada 3 dias. Manter a temperatura e humidade da sala de criação, a 25 ° C e 60%, respectivamente. Testar a capacidade de vôo de cada besouro antes de implantar eletrodos de arame fino. Gentilmente jogar um besouro no ar. Se o besouro pode voar por mai…

Representative Results

O procedimento de implantação de eléctrodos é apresentado na Figura 2, os eléctrodos de arame de prata fina foram implantados no músculo 3ax do besouro através de pequenos orifícios perfurados na cutícula macio sobre o músculo (Figuras 2d – e).. Este cutícula macia é encontrada logo acima da apodema do músculo basalar após a remoção da parte anterior do metepisternum (Figuras 2d – c). Os …

Discussion

O processo de implantação é importante, pois afeta a confiabilidade do experimento. Os eléctrodos deve ser inserido dentro do músculo a uma profundidade de 3 mm ou menos, dependendo do tamanho do besouro (evitando o contacto com os músculos próximas). Se os eletrodos tocar os músculos próximos, ações motoras indesejáveis ​​e comportamentos podem ocorrer devido à contração dos músculos próximos. Os dois eléctrodos deve ser bem alinhados para assegurar que não há curto-circuito ocorrer. Quando a fu…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This material is based on the works supported by Nanyang Assistant Professorship (NAP, M4080740), Agency for Science, Technology and Research (A*STAR) Public Sector Research Funding (PSF, M4070190), A*STAR-JST (The Japan Science and Technology Agency) joint grant (M4070198), and Singapore Ministry of Education (MOE2013-T2-2-049). The authors would like to thank Mr. Roger Tan Kay Chia, Prof. Low Kin Huat, Mr. Poon Kee Chun, Mr. Chew Hock See, Mr. Lam Kim Kheong and Dr. Mao Shixin at School of MAE for their support in setting up and maintaining the research facilities. The authors thank Prof. Michel Maharbiz (U.C. Berkeley) his advice and discussion, Prof. Kris Pister and his group (U.C. Berkeley) for their support in providing the GINA used in this study.

Materials

Mecynorrhina torquata beetle Kingdom of Beetle Taiwan 10 g, 8 cm, pay load capacity is 30% of the body mass
Aproval of importing and using by Agri-Food and Veterinary Authority of Singapore (AVA; HS code: 01069000, product code: ALV002).
Wireless backpack stimulator Custom TI CC2431 micocontroler
The board is custom made based on the GINA board from Prof. Kris Pister’s lab. The layout of GINA board can be found at    https://openwsn.atlassian.net/wiki/display/OW/GINA
Wii Remote control Nintendo Bluetooth remote control to send the command to the operator laptop
BeetleCommander v1.8 Custom. Maharbiz group at UC Berkeley and Sato group at NTU Establish the wireless communication of the backpack and the operator laptop. Configure the stimulus parameters and log the positional data. Visualize the flight data.
GINA base station Kris Pister group at UC Berkeley TI MSP430F2618 and AT86RF231
Motion capture system VICON T160 8 cameras for a flight arena of 12.5 x 8 x 4 m
Motion capture system VICON T40s 12 cameras for a flight arena of 12.5 x 8 x 4 m
Micro battery Fullriver  201013HS10C  3.7V, 10 mAh
Retro reflective tape Reflexite V92-1549-010150 V92 reflective tape, silver color
PFA-Insulated Silver Wire  A-M systems 786000 127 µm bare, 177.8 µm coated, 3 mm bare silver flame exposed at tips
SMT Micro Header  SAMTEC FTSH-110-01-L-DV 0.3 x 6 mm, bend to make a 3 mm long slider to secure the electrode into the PCB header.
Beeswax Secure the electrodes
Dental Wax Vertex Immobilize the beetle
Insect pin ROBOZ RS-6082-30 Size  00; 0.3mm Rod diameter; 0.03 mm tip width; 38 mm Length 
Make electrode guiding holes on cuticle
Tweezers DUMONT RS-5015 Pattern #5; .05 X .01mm Tip Size; 110mm Length
Dissecting and implantation
Scissors ROBOZ RS-5620 Vannas Micro Dissecting Spring Scissors; Straight; 3mm Cutting Edge; 0.1mm Tip Width; 3" Overall Length 
Dissecting and implantation
Potable soldering iron DAIYO DS241 Reflow beeswax
Hotplate  CORNING PC-400D Melting beeswax and dental wax
Flourescent lamp Philips TL5 14W Light the entire flight arena with 30 panels (60 x 60 cm2). Each panel has 3 lamps.
14 W, 549 mm x 17 mm 

References

  1. Kutsch, W., Schwarz, G., Fischer, H., Kautz, H. Wireless Transmission of Muscle Potentials During Free Flight of a Locust. J. Exp. Biol. 185 (1), 367-373 (1993).
  2. Fischer, H., Kautz, H., Kutsch, W. A Radiotelemetric 2-Channel Unit for Transmission of Muscle Potentials During Free Flight of the Desert Locust, Schistocerca Gregaria. J. Neurosci. Methods. 64 (1), 39-45 (1996).
  3. Ando, N., Shimoyama, I., Kanzaki, R. A Dual-Channel FM Transmitter for Acquisition of Flight Muscle Activities from the Freely Flying Hawkmoth, Agrius Convolvuli. J. Neurosci. Methods. 115 (2), 181-187 (2002).
  4. Sanchez, C. J., et al. Locomotion control of hybrid cockroach robots. J. R. Soc. Interface. 12 (105), (2015).
  5. Sato, H., et al. A cyborg beetle: insect flight control through an implantable, tetherless microsystem. , 164-167 (2008).
  6. Bozkurt, A., Gilmour, R. F., Lal, A. Balloon-Assisted Flight of Radio-Controlled Insect Biobots. IEEE Trans. Biomed. Eng. 56 (9), 2304-2307 (2009).
  7. Sato, H., et al. Remote Radio Control of Insect Flight. Front. Neurosci. 3, (2009).
  8. Daly, D. C., et al. A Pulsed UWB Receiver SoC for Insect Motion Control. IEEE J. Solid-State Circuits. 45 (1), 153-166 (2010).
  9. Maharbiz, M. M., Sato, H. Cyborg Beetles. Sci. Am. 303 (6), 94-99 (2010).
  10. Tsang, W. M., et al. Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe. , 39-42 (2010).
  11. Hinterwirth, A. J., et al. Wireless Stimulation of Antennal Muscles in Freely Flying Hawkmoths Leads to Flight Path Changes. PloS ONE. 7 (12), (2012).
  12. Whitmire, E., Latif, T., Bozkurt, A. Kinect-based system for automated control of terrestrial insect biobots. , 1470-1473 (2013).
  13. Sato, H., et al. Deciphering the Role of a Coleopteran Steering Muscle via Free Flight Stimulation. Curr. Biol. 25 (6), 798-803 (2015).
  14. Erickson, J. C., Herrera, M., Bustamante, M., Shingiro, A., Bowen, T. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot. PLoS ONE. 10 (8), e0134348 (2015).
  15. Zhaolin, Y., et al. A preliminary study of motion control patterns for biorobotic spiders. , 128-132 (2014).
  16. Feng, C., Chao, Z., Hao Yu, C., Sato, H. Insect-machine hybrid robot: Insect walking control by sequential electrical stimulation of leg muscles. , 4576-4582 (2015).
  17. Cao, F., et al. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles. PLoS ONE. 9 (8), e105389 (2014).
  18. Zhao, H., et al. Neuromechanism Study of Insect-Machine Interface: Flight Control by Neural Electrical Stimulation. PLoS ONE. 9 (11), e113012 (2014).
  19. Tsang, W. M., et al. Flexible Split-Ring Electrode for Insect Flight Biasing Using Multisite Neural Stimulation. IEEE Trans. Biomed. Eng. 57 (7), 1757-1764 (2010).
  20. Barron, A. B. Anaesthetising Drosophila for behavioural studies. J. Insect Physiol. 46 (4), 439-442 (2000).
  21. Cooper, J. E. Anesthesia, Analgesia, and Euthanasia of Invertebrates. ILAR Journal. 52 (2), 196-204 (2011).
  22. Miller, T. A. . Insect neurophysiological techniques. , (2012).
  23. Leary, S., et al. . AVMA guidelines for the euthanasia of animals. , (2013).
  24. Heath, B., West, G., Heard, D., Caulkett, N. Mobile Inhalant Anesthesia Techniques. in Zoo Animal and Wildlife Immobilization and Anesthesia. , 75-80 (2008).
  25. Mischiati, M., et al. Internal models direct dragonfly interception steering. Nature. 517 (7534), 333-338 (2015).
  26. Kutsch, W., Berger, S., Kautz, H. Turning Manoeuvres in Free-Flying Locusts: Two-Channel Radio-Telemetric Transmission of Muscle Activity. J. Exp. Zoolog. Part A Comp. Exp. Biol. 299 (2), 139-150 (2003).
  27. Wang, H., Ando, N., Kanzaki, R. Active Control of Free Flight Manoeuvres in a Hawkmoth, Agrius Convolvuli. J. Exp. Biol. 211 (3), 423-432 (2008).
  28. Sato, H., Maharbiz, M. M. Recent developments in the remote radio control of insect flight. Front. Neurosci. 4, (2010).
  29. Tien Van, T., et al. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation. Bioinsp. Biomim. 7 (3), 036021 (2012).
  30. Sane, S. P., Dickinson, M. H. The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204 (15), 2607-2626 (2001).
  31. de Croon, G. C., et al. Design, aerodynamics and autonomy of the DelFly. Bioinsp. Biomim. 7 (2), 025003 (2012).
  32. Ma, K. Y., Chirarattananon, P., Fuller, S. B., Wood, R. J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science. 340 (6132), 603-607 (2013).
check_url/54260?article_type=t

Play Video

Cite This Article
Vo Doan, T. T., Sato, H. Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina torquata). J. Vis. Exp. (115), e54260, doi:10.3791/54260 (2016).

View Video