Summary

Etablering af proliferativ Tetraploide Celler fra transformerede humane fibroblaster

Published: January 08, 2017
doi:

Summary

Although proliferative polyploid cells are necessary to analyze chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is not easy. The present report describes relatively simple procedures to establish proliferative tetraploid cells free of a diploid population from normal human fibroblasts.

Abstract

Polyploid (mostly tetraploid) cells are often observed in preneoplastic lesions of human tissues and their chromosomal instability has been considered to be responsible for carcinogenesis in such tissues. Although proliferative polyploid cells are requisite for analyzing chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is rather challenging. Induction of tetraploidy by chemical agents usually results in a mixture of diploid and tetraploid populations, and most studies employed fluorescence-activated cell sorting or cloning by limiting dilution to separate tetraploid from diploid cells. However, these procedures are time-consuming and laborious. The present report describes a relatively simple protocol to induce proliferative tetraploid cells from normal human fibroblasts with minimum contamination by diploid cells. Briefly, the protocol is comprised of the following steps: arresting cells in mitosis by demecolcine (DC), collecting mitotic cells after shaking off, incubating collected cells with DC for an additional 3 days, and incubating cells in drug-free medium (They resume proliferation as tetraploid cells within several days). Depending on cell type, the collection of mitotic cells by shaking off might be omitted. This protocol provides a simple and feasible method to establish proliferative tetraploid cells from normal human fibroblasts. Tetraploid cells established by this method could be a useful model for studying chromosome instability and the oncogenic potential of polyploid human cells.

Introduction

Polyploidi er observeret ikke kun i specialiserede væv hos pattedyrarter, men også i en række forskellige patologiske tilstande, såsom cancer og degenerative sygdomme. Polyploide (hovedsagelig tetraploide) celler er ofte observeret i præneoplastiske læsioner af humane væv, såsom Barretts øsofagus 1,2 eller skællede intraepithelial læsioner af cervix 3,4, og er blevet anset for at være kilden til maligne aneuploide celler i disse væv 5 6. Selv om det antydes, at omdannelsen af ​​tetraploid til aneuploide celler kunne være en afgørende begivenhed i de tidlige stadier af tumorigenese, er involveret i denne proces mekanismer ikke fuldt forstået. Dette er dels fordi ingen in vitro model har været til rådighed, hvor ikke-transformerede polyploide humane celler kan formere sig.

Nogle forskere har fremkaldt tetraploidy i ikke-transformerede humane epitelceller gennem generering af binucleated celler ved inhibiting cytokinese 7-9. I denne fremgangsmåde er imidlertid unødvendige diploide celler skal elimineres ved fluorescensaktiveret cellesortering (FACS) 7,8 eller kloning ved begrænsende fortynding 9. Fordi disse procedurer er arbejdskrævende og ikke let at udføre, til enklere metoder etablere transformerede tetraploide celler ønskes for forskning på dette område.

I nærværende rapport beskriver vi en protokol til at etablere proliferative tetraploide celler fra normale humane fibroblaster eller telomerase-udødeliggjort humane fibroblaster ved relativt enkle procedurer. Procedurerne bruger spindel gift demecolcin (DC) anholdelse diploide celler i mitose og mitotiske celler indsamlet af ryste yderligere behandlet med DC. Diploide mitotiske celler behandlet med DC i længere tid konvertere til tetraploide G1 celler, og disse celler formere så tetraploide celler efter vækst anholdelse i flere dage efter fjernelse narkotika. Denne protokol giveren effektiv fremgangsmåde til at skabe en nyttig model til at studere forholdet mellem kromosom ustabilitet og den onkogene potentiale polyploide humane celler.

Protocol

1. Cellekultur Opnå cellerne for at inducere tetraploidy. Hidtil er det blevet bekræftet, at denne teknik kan anvendes på de humane fibroblast-cellelinjer TIG-1, BJ, IMR-90 og telomerase-immortaliserede TIG-1 (TIG-HT). Grow celler i minimalt essentielt medium med α ændring eller enhver anden celle dyrkningsmedium egnet til celletypen, der skal undersøges suppleret med 10% (vol / vol) varmeinaktiveret kalvefosterserum (FBS) ved inkubation i en 5% (v / v) CO2-atmosfære ved 37 ° C. P…

Representative Results

Det er vores erfaring, kan TIG-1 celler gøres næsten helt tetraploid ved simpel kontinuerlig behandling med 0,1 mg / ml DC i 4 dage (figur 2A). I modsætning hertil er andre fibroblast stammer, såsom BJ eller IMR-90, og TIG-HT-celler, blev en blanding af diploid og tetraploide populationer efter samme behandling, og isolering af mitotiske celler ved ryste-off-metoden er nødvendig i løbet DC behandling (sædvanligvis 16 – 18 timer efter start af behandling) (…

Discussion

Et stort problem i induktion af tetraploidy fra diploide celler ved kemiske midler, enten ved cytokinese inhibitorer eller ved tentraadsinhibitor, er, at cellerne bliver ofte en blanding af diploide og tetraploide populationer, og tetraploide celler skal være adskilt fra diploide celler. Mest almindelige tilgange til isolering af en tetraploid befolkning fri for diploide celler bruger FACS eller kloning ved at begrænse fortynding. Men disse procedurer er arbejdskrævende og ikke let at udføre. I denne rapport præsen…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Mrs. Matsumoto for the technical assistance.

Materials

MEM-α Sigma-Aldrich M8042-500ML
Trypsin-EDTA Sigma-Aldrich T4174
FBS Sigma-Aldrich 172012-500ML
Demecolcine solution (10 μg/mL in HBSS) Sigma-Aldrich D1925-10ML
BD CycleTES Plus DNA Reagent Kits BD Biosciences #340242 For examination of DNA ploidy by flow cytometry
Human chromosome multicolor FISH probe 24XCyte MetaSystems #D-0125-060-DI Specialized filter set and software for mFISH analysis are necessary
Isis imaging system with mFISH  software  MetaSystems Specialized probe kit is necessary

References

  1. Rabinovitch, P., et al. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 96 (11), 3071-3083 (2001).
  2. Galipeau, P., et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4 (2), e67 (2007).
  3. Olaharski, A., et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis. 27, 337-343 (2006).
  4. Liu, Y., et al. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy. Cancer Res. 67, 2603-2610 (2007).
  5. Davoli, T., de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol. 27, 585-610 (2011).
  6. Fox, D., Duronio, R. Endoreplication and polyploidy: insights into development and disease. Development. 140, 3-12 (2013).
  7. Fujiwara, T., et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 437, 1043-1047 (2005).
  8. Ganem, N., et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell. 158 (4), 833-848 (2014).
  9. Kuznetsova, A., et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell cycle. 14 (17), 2810-2820 (2015).
  10. Vindeløv, L., Christensen, I. Detergent and proteolytic enzyme-based techniques for nuclear isolation and DNA content analysis. Methods Cell Biol. 41, 219-229 (1994).
  11. Darzynkiewicz, Z., Juan, G. DNA content measurement for DNA ploidy and cell cycle analysis. Curr Protoc Cytom. , Chapter 7: Unit 7.5 (2001).
  12. Knutsen, T., Bixenman, H., Lawce, H., Martin, P. Chromosome analysis guidelines preliminary report. Cancer Genet Cytogenet. 52 (1), 11-17 (1991).
  13. Liehr, T., et al. Multicolor FISH probe sets and their applications. Histol. Histopathol. 19 (1), 229-237 (2004).
  14. Ohshima, S., Seyama, A. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts. Hum. Cell. 25 (3), 78-85 (2012).
  15. Ohshima, S., Seyama, A. Establishment of proliferative tetraploid cells from normal human fibroblasts. Front. Oncol. 3, 198 (2013).
  16. Ohshima, S., Seyama, A. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts. Genes, Chromosome Cancer. 55 (6), 522-530 (2016).
  17. Di Leonardo, A., et al. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013-1019 (1997).
  18. Andreassen, P., Lohez, O., Lacroix, F., Margolis, R. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell. 12, 1315-1328 (2001).
  19. Vogel, C., et al. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene. 23, 6845-6853 (2004).
  20. Aylon, Y., Oren, M. p53: Guardian of ploidy. Mol. Oncol. 5 (4), 315-323 (2011).
  21. Uetake, Y., Sluder, G. Cell cycle progression after cleavage failure : mammalian somatic cells do not possess a "tetraploidy checkpoint&#34. J. Cell Biol. 165, 609-615 (2004).
  22. Ganem, N., Pellman, D. Limiting the proliferation of polyploid cells. Cell. 131, 437-440 (2007).
  23. Ho, C., Hau, P., Marxer, M., Poon, R. The requirement of p53 for maintaining chromosomal stability during tetraploidization. Oncotarget. 1 (7), 583-595 (2010).
check_url/55028?article_type=t

Play Video

Cite This Article
Ohshima, S., Seyama, A. Establishment of Proliferative Tetraploid Cells from Nontransformed Human Fibroblasts. J. Vis. Exp. (119), e55028, doi:10.3791/55028 (2017).

View Video