Summary

Etablering av Proliferativ Tetraploid Celler fra transformerte humane fibroblaster

Published: January 08, 2017
doi:

Summary

Although proliferative polyploid cells are necessary to analyze chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is not easy. The present report describes relatively simple procedures to establish proliferative tetraploid cells free of a diploid population from normal human fibroblasts.

Abstract

Polyploid (mostly tetraploid) cells are often observed in preneoplastic lesions of human tissues and their chromosomal instability has been considered to be responsible for carcinogenesis in such tissues. Although proliferative polyploid cells are requisite for analyzing chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is rather challenging. Induction of tetraploidy by chemical agents usually results in a mixture of diploid and tetraploid populations, and most studies employed fluorescence-activated cell sorting or cloning by limiting dilution to separate tetraploid from diploid cells. However, these procedures are time-consuming and laborious. The present report describes a relatively simple protocol to induce proliferative tetraploid cells from normal human fibroblasts with minimum contamination by diploid cells. Briefly, the protocol is comprised of the following steps: arresting cells in mitosis by demecolcine (DC), collecting mitotic cells after shaking off, incubating collected cells with DC for an additional 3 days, and incubating cells in drug-free medium (They resume proliferation as tetraploid cells within several days). Depending on cell type, the collection of mitotic cells by shaking off might be omitted. This protocol provides a simple and feasible method to establish proliferative tetraploid cells from normal human fibroblasts. Tetraploid cells established by this method could be a useful model for studying chromosome instability and the oncogenic potential of polyploid human cells.

Introduction

Polyploidi er blitt observert ikke bare i spesielle vev i pattedyrarter, men også i en rekke patologiske tilstander, slik som kreft og degenerative sykdommer. Polyploide (for det meste tetraploide) celler blir ofte observert i preneoplastiske lesjoner av humane vev, såsom Barretts øsofagus 1,2 eller squamous intraepitelial kreft i livmorhalsen 3,4, og er blitt ansett for å være kilden til ondartede celler aneuploide i disse vevene 5 6. Selv om det er foreslått at omdannelsen av tetraploid til aneuploide celler kan være en viktig hendelse i de tidlige stadier av tumorgenese, er involvert i denne prosessen mekanismer ikke fullt ut forstått. Dette er delvis fordi ingen in vitro modellen har vært tilgjengelig der transformerte polyploide menneskeceller kan formere seg.

Enkelte forskere har indusert tetraploidy i transformerte humane epitelceller gjennom generasjon binucleated celler ved inhibiting cytokinese 7-9. I denne metode er imidlertid unødvendige diploide celler må elimineres ved fluorescens-aktivert cellesortering (FACS) 7,8 eller kloning ved begrensende fortynning 9. Fordi disse fremgangsmåter er arbeidskrevende og er ikke lett å utføre, til enklere metoder etablere ikke-transformerte celler tetraploide er ønsket for forskning i dette feltet.

I denne rapporten beskriver vi en protokoll for å etablere proliferativ tetraploide celler fra normale humane fibroblaster eller telomerase-udødelig humane fibroblaster ved relativt enkle prosedyrer. Prosedyrene bruke spindel giften demecolcine (DC) for å arrestere diploide celler i mitose, og mitotiske celler samlet inn ved å riste av er videre behandlet med DC. Diploide mitotiske celler behandlet med DC for lengre tid konvertere til tetraploide G1 celler, og disse cellene sprer som tetraploide celler etter vekst arrest i flere dager etter narkotika fjerning. Denne protokollen giren effektiv metode for å lage en nyttig modell for å studere sammenhengen mellom kromosomet ustabilitet og den onkogene potensialet til polyploide humane celler.

Protocol

1. Cell Culture Skaff cellene å indusere tetraploidy. Til dags dato er det blitt bekreftet at denne teknikken kan anvendes på de humane fibroblast-cellelinjer TIG-1, BJ, IMR-90 og telomerase-udødelig TIG-1 (TIG-HT). Dyrke celler i minimum essensielt medium med α modifikasjon eller en hvilken som helst annen cellekulturmedium egnet for den celletype som skal studeres, supplert med 10% (v / v) varmeinaktivert føtalt bovint serum (FBS) ved inkubasjon i en 5% (v / v) CO 2 atmosfæren ved…

Representative Results

I vår erfaring, kan TIG-1 celler gjøres nesten helt tetraploid ved enkel kontinuerlig behandling med 0,1 mg / ml DC i 4 dager (figur 2A). I kontrast til andre fibroblast-stammer, slik som BJ eller IMR-90, og TIG-HT-celler, ble en blanding av diploid og tetraploide populasjoner etter den samme behandling, og isolering av mitotiske celler ved å riste-off-metoden er nødvendig i løpet DC behandling (vanligvis 16 – 18 timer etter begynnelsen av behandlingen) (fig…

Discussion

Et stort problem i induksjon av tetraploidy fra diploide celler fra kjemiske midler, enten ved cytokinese inhibitorer eller ved spindel inhibitorer, er at celler ofte bli en blanding av diploide og tetraploide populasjoner, og tetraploide celler må separeres fra diploide celler. De vanligste metoder for isolering av en tetraploid befolkning uten diploide cellene bruker FACS eller kloning av begrensende fortynning. Men disse framgangsmåter er arbeidskrevende og er ikke lett å utføre. I denne rapporten presenterer vi …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Mrs. Matsumoto for the technical assistance.

Materials

MEM-α Sigma-Aldrich M8042-500ML
Trypsin-EDTA Sigma-Aldrich T4174
FBS Sigma-Aldrich 172012-500ML
Demecolcine solution (10 μg/mL in HBSS) Sigma-Aldrich D1925-10ML
BD CycleTES Plus DNA Reagent Kits BD Biosciences #340242 For examination of DNA ploidy by flow cytometry
Human chromosome multicolor FISH probe 24XCyte MetaSystems #D-0125-060-DI Specialized filter set and software for mFISH analysis are necessary
Isis imaging system with mFISH  software  MetaSystems Specialized probe kit is necessary

References

  1. Rabinovitch, P., et al. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 96 (11), 3071-3083 (2001).
  2. Galipeau, P., et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4 (2), e67 (2007).
  3. Olaharski, A., et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis. 27, 337-343 (2006).
  4. Liu, Y., et al. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy. Cancer Res. 67, 2603-2610 (2007).
  5. Davoli, T., de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol. 27, 585-610 (2011).
  6. Fox, D., Duronio, R. Endoreplication and polyploidy: insights into development and disease. Development. 140, 3-12 (2013).
  7. Fujiwara, T., et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 437, 1043-1047 (2005).
  8. Ganem, N., et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell. 158 (4), 833-848 (2014).
  9. Kuznetsova, A., et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell cycle. 14 (17), 2810-2820 (2015).
  10. Vindeløv, L., Christensen, I. Detergent and proteolytic enzyme-based techniques for nuclear isolation and DNA content analysis. Methods Cell Biol. 41, 219-229 (1994).
  11. Darzynkiewicz, Z., Juan, G. DNA content measurement for DNA ploidy and cell cycle analysis. Curr Protoc Cytom. , Chapter 7: Unit 7.5 (2001).
  12. Knutsen, T., Bixenman, H., Lawce, H., Martin, P. Chromosome analysis guidelines preliminary report. Cancer Genet Cytogenet. 52 (1), 11-17 (1991).
  13. Liehr, T., et al. Multicolor FISH probe sets and their applications. Histol. Histopathol. 19 (1), 229-237 (2004).
  14. Ohshima, S., Seyama, A. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts. Hum. Cell. 25 (3), 78-85 (2012).
  15. Ohshima, S., Seyama, A. Establishment of proliferative tetraploid cells from normal human fibroblasts. Front. Oncol. 3, 198 (2013).
  16. Ohshima, S., Seyama, A. Establishment of proliferative tetraploid cells from telomerase-immortalized normal human fibroblasts. Genes, Chromosome Cancer. 55 (6), 522-530 (2016).
  17. Di Leonardo, A., et al. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013-1019 (1997).
  18. Andreassen, P., Lohez, O., Lacroix, F., Margolis, R. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell. 12, 1315-1328 (2001).
  19. Vogel, C., et al. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene. 23, 6845-6853 (2004).
  20. Aylon, Y., Oren, M. p53: Guardian of ploidy. Mol. Oncol. 5 (4), 315-323 (2011).
  21. Uetake, Y., Sluder, G. Cell cycle progression after cleavage failure : mammalian somatic cells do not possess a "tetraploidy checkpoint&#34. J. Cell Biol. 165, 609-615 (2004).
  22. Ganem, N., Pellman, D. Limiting the proliferation of polyploid cells. Cell. 131, 437-440 (2007).
  23. Ho, C., Hau, P., Marxer, M., Poon, R. The requirement of p53 for maintaining chromosomal stability during tetraploidization. Oncotarget. 1 (7), 583-595 (2010).
check_url/55028?article_type=t

Play Video

Cite This Article
Ohshima, S., Seyama, A. Establishment of Proliferative Tetraploid Cells from Nontransformed Human Fibroblasts. J. Vis. Exp. (119), e55028, doi:10.3791/55028 (2017).

View Video