Summary

Vasodilatación de los vasos aislados y el aislamiento de la matriz extracelular de la piel-apretado ratones

Published: March 24, 2017
doi:

Summary

We describe the isolation of cardiac extracellular matrix from C57Bl/6J control mice, tight-skin mice, and tight-skin mice treated with the IRF5 inhibitory peptide. We also describe the vasodilation studies on the isolated vessels from C57Bl/6J, tight-skin mice and tight-skin mice treated with the IRF5 inhibitory peptide.

Abstract

The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5’s ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides.

IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.

Introduction

Regulación del crecimiento celular y la respuesta inmune de muerte celular es fundamental para el papel de la familia de factores de transcripción de factores reguladores de interferón. IRF5 se pone de relieve como crucial para la regulación de la respuesta inmune entre el tipo 1, la promoción de una respuesta inflamatoria y tipo 2, una reparación de tejidos respuesta inmune de orientación. IRF5 es clave en el cáncer de 1, y la autoinmunidad 2, 3, 4, 5.

El ratón apretado-piel (Tsk / +) es un modelo para la fibrosis del tejido y la esclerodermia debido a una mutación de duplicación en el gen de la fibrilina-1. Esta mutación da como resultado un apretado-piel y un aumento en el tejido conectivo. Estos ratones desarrollan inflamación miocárdica, fibrosis e insuficiencia finalmente corazón 5, 6, 7,> 8, 9. La esclerodermia es un trastorno fibrótico autoinmune que afecta a aproximadamente 150.000 pacientes en los Estados Unidos 6. Las características de esta enfermedad son la fibrosis de los órganos internos, incluyendo el corazón 7, 8, 9, 10, 11.

La naturaleza del estudio exigía el diseño de un péptido inhibidor. El enfoque de software fue elegido sobre un enfoque tradicional usando una visualización de fagos. El enfoque de software es más fácil y menos consume mucho tiempo. El banco de datos RCSB se utiliza para identificar sitios de unión apropiados 12. Para estudiar la interacción del péptido de nuevo diseño con la proteína recombinante y centrarse en los parámetros de unión, se utilizó una técnica llamada interferometría capa biológica. Biocapa interferometría es un techniq basado biosensorue lo que determina la afinidad de unión, de asociación y disociación utilizando un biosensor y una muestra de unión. El biosensor puede ser fluorescente, luminiscentemente, etiquetado radiométricamente y colorimétricamente. La medición se basa en la adición de masa o el agotamiento se asemeja asociación y disociación 13, 14. El objetivo de este estudio fue comprender el papel de IRF5 en la inflamación y la fibrosis miocárdica. El objetivo era profundizar en el papel de IRF5 en el desarrollo de la fibrosis del tejido y la esclerodermia.

Protocol

Este estudio se llevó a cabo en estricta conformidad con las recomendaciones de la Guía para el Cuidado y Uso de Animales de Laboratorio de los Institutos Nacionales de Salud. El protocolo fue aprobado por el Cuidado de Animales institucional y el empleo (Protocolo: AUA # 1517). Todas las investigaciones con ratones se llevó a cabo de conformidad con la política PHS. 1. Diseño de Decoy Péptido Encuentra estructura 3D de la IRF5 y basar el diseño en él. Diseño de un 17 mer, denominado IRF5D (E…

Representative Results

Los resultados demostrados en la Figura 1 muestran cómo diseñar un péptido. La Figura 1, parte superior izquierda, muestra la región (entre las 2 flechas amarillas, los aminoácidos (aa) 425 a 436) en IRF5 que es fosforilada por una serie de quinasas. La figura 1, parte superior derecha, muestra un óvalo de color amarillo donde dominio fosforilada de IRF5 une. La estructura dimérica de 3DSH se hizo girar para observar una hendidura…

Discussion

El objetivo era diseñar un inhibidor IRF5 para dilucidar el papel de IRF5 sobre la inflamación, fibrosis y la función vascular en los corazones de TSK / + ratones. Los resultados son que IRF5D no indujo la proliferación o la apoptosis. Por otra parte, la inflamación se redujo y la función vascular mejorada. Estos datos sugieren que IRF5 juega un papel mecanicista importante en el desarrollo de la inflamación y fibrosis en el corazón de TSK / + ratones y que tiene el potencial de servir como una diana terapéutic…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants HL-089779 (DW), HL-112270 (KAP) and HL-102836 (KAP) and Cimphoni Life Sciences (part of DW salary). The authors thank Meghann Sytsma for editing the manuscript.

Materials

 Triton X 100 Sigma Aldrich X100- 100ml
Alexa 488-labeled goat anti-mouse IgG antibody  Thermo Fisher A11001
Bardford reagent Thermo Fisher 23200 Pierce 
Biosensors Forte-Bio MR18-0009
CD64 (H-250) Santa Cruz Biotechnologies sc-15364
CellEvent Caspase-3/7 Substrate Thermo Fisher/Life Technologies C10427
CellTiter AQueous One Solution Cell Proliferation Assay kit Promega G3580 Promega
DAPI (4′,6-diamidino-2-phenylindole) Thermo Fisher D-1306 1:1000 dilution in PBS
donkey anti rat Alexa 488 Thermo Fisher A-21208 1:1000 dilution in PBS
ECL plus GE healthcare/Amersham RPN2133 After a lot of trial and error we came back to this one
Eclipse TE 200-U microscope with EZ C1 laser scanning software Nikon
goat anti rabbit Alexa 488 Thermo Fisher A-11008 1:1000 dilution in PBS
HRP  anti-goat Santa Cruz Biotechnologies sc-516086 !:10000 dilution in TBS
HRP donkey anti-mouse Santa Cruz Biotechnologies sc-2315 1:10000 dilution in TBS
ICAM-1 antibody Santa Cruz Biotechnologies sc-1511 1:200 dilution in PBS
IRF5 antibody (H56) Santa Cruz Biotechnologies sc-98651
Micro plate reader Elx800 Biotek
NIMP neutrophil marker Santa Cruz Biotechnologies sc-133821 1:200 dilution in PBS
Octet RED Forte Bio protein-protein binding
Peptide design  Medit SA software RCSB.org
Recombinant IRF5 protein synthesis TopGene Technologies protein expression, synthesis service
sodium dodecyl phosphate Sigma Aldrich 436143 detergent
Ketamine Pharmacy Schedule III controlled substance, presciption required 
Xylazine MedVet
3.5X-45X Trinocular Dissecting Zoom Stereo Microscope with Gooseneck LED Lights Am Scope SKU: SM-1TSX-L6W
Zeba Desalting Columns Thermofisher 2161515
Endothelial Basal Media EBM Bullet kit Lonza CC-3124 kit contains growth supplemets
VIA-100K  Boeckeler Instruments
4-15% TGX gel Bio-Rad 5671081
MedSuMo software Medit, Palaiseau, France
Laemmli Buffer BioRad

References

  1. Bi, X., et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res. 13 (6), 111 (2011).
  2. Dideberg, V., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet. 16 (24), 3008-3016 (2007).
  3. Graham, R. R., et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat.Genet. 38 (5), 550-555 (2006).
  4. Krausgruber, T., et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12 (3), 231-238 (2011).
  5. Eames, H. L., Corbin, A. L., Udalova, I. A. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl Res. 167 (1), 167-182 (2016).
  6. Mayes, M. D., et al. Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis. Am J Hum Genet. 94 (1), 47-61 (2014).
  7. Dimitroulas, T., et al. Micro-and Macrovascular Treatment Targets in Scleroderma Heart Disease. Curr Pharm Des. , (2013).
  8. Botstein, G. R., LeRoy, E. C. Primary heart disease in systemic sclerosis (scleroderma): advances in clinical and pathologic features, pathogenesis, and new therapeutic approaches. Am Heart J. 102 (5), 913-919 (1981).
  9. Oram, S., Stokes, W. The heart in scleroderma. Br Heart J. 23 (3), 243-259 (1961).
  10. Xu, H., et al. 4F decreases IRF5 expression and activation in hearts of tight-skin mice. PLoS One. 7 (12), 52046 (2012).
  11. Steen, V. The heart in systemic sclerosis. Curr.Rheumatol.Rep. 6 (2), 137-140 (2004).
  12. Deshpande, N., et al. The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33, D233-D237 (2005).
  13. Concepcion, J., et al. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 12 (8), 791-800 (2009).
  14. Matthew, A. Current biosensor technologies in drug discovery. Drug Discovery. , 69 (2006).
  15. Doppelt-Azeroual, O., Moriaud, F., Adcock, S. A., Delfaud, F. A review of MED-SuMo applications. Infect Disord Drug Targets. 9 (3), 344-357 (2009).
  16. Kim, S., Jang, J., Yu, J., Chang, J. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine. 28 (22), 3801-3808 (2010).
  17. Frenzel, D., Willbold, D. Kinetic Titration Series with Biolayer Interferometry. PloS one. 9 (9), 106882 (2014).
  18. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  19. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72 (1-2), 248-254 (1976).
  20. Bauer, P. M., et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J.Biol.Chem. 278 (17), 14841-14849 (2003).
  21. Weihrauch, D., et al. An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice. PLoS One. 11 (4), 0151999 (2016).
  22. Hoogenboom, H. R., et al. Antibody phage display technology and its applications. Immunotechnology. 4 (1), 1-20 (1998).
  23. Roehm, N. W., Rodgers, G. H., Hatfield, S. M., Glasebrook, A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 142 (2), 257-265 (1991).
  24. Van Tonder, A., Joubert, A. M., Cromarty, A. D. Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 8 (1), 1 (2015).
  25. Ott, H. C., et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  26. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  27. Weihrauch, D., et al. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol. 293 (3), 1432-1441 (2007).
  28. Roy, S., P, P., Mavragani, C. IRF-5 – A New Link to Autoimmune Diseases. Autoimmune Disorders – Pathogenetic Aspects. , 35 (2011).
check_url/55036?article_type=t

Play Video

Cite This Article
Weihrauch, D., Krolikowski, J. G., Jones, D. W., Zaman, T., Bamkole, O., Struve, J., Pagel, P. S., Lohr, N. L., Pritchard, Jr., K. A. Vasodilation of Isolated Vessels and the Isolation of the Extracellular Matrix of Tight-skin Mice. J. Vis. Exp. (121), e55036, doi:10.3791/55036 (2017).

View Video