Summary

マリンTubewormでライブ光学および電子顕微鏡技術を用いた石灰化イベントのキャラクタリゼーション

Published: February 28, 2017
doi:

Summary

We demonstrate the use of various microscopy methods that are useful in observing the calcification of a tubeworm, Hydroides elegans, as well as locating and characterizing the first calcified material. Live microscopy and electron microscopy are used together to provide functional and material information that are important in studying biomineralization.

Abstract

Characterizing the first event of biological production of calcium carbonate requires a combination of microscopy approaches. First, intracellular pH distribution and calcium ions can be observed using live microscopy over time. This allows identification of the life stage and the tissue with the feature of interest for further electron microscopy studies. Life stage and tissues of interest are typically higher in pH and Ca signals.

Here, using H. elegans, we present a protocol to characterize the presence of calcium carbonate structures in a biological specimen on the scanning electron microscope (SEM), using energy-dispersive X-ray spectroscopy (EDS) to visualize elemental composition, using electron backscatter diffraction (EBSD) to determine the presence of crystalline structures, and using transmission electron microscopy (TEM) to analyze the composition and structure of the material. In this protocol, a focused ion beam (FIB) is used to isolate samples with dimension suitable for TEM analysis. As FIB is a site specific technique, we demonstrate how information from the previous techniques can be used to identify the region of interest, where Ca signals are highest.

Introduction

バイオミネラリゼーションが絶妙に注文したミネラル1の産生をもたらす細胞活性のスイートを橋渡しする複雑な一連の事象、です。課題は、光学および電子顕微鏡法の組み合わせを使用して動的な細胞プロセスで洗練された鉱物の構造の両方を特徴付けることです。細胞内pHの上昇は、したがって、増加したpHを有し、ライフステージを特定する石灰化は2、3発生する可能性がある時間を明らかにする、CaCO 3を結晶の形成に有利に働きます。

家族カンザシゴカイ科からtubewormsは海4で共通calcifiersです。これは、特に生物付着5、6に、また、海洋研究のための人気の無脊椎動物のモデルです。本研究では、鉱化区画における石灰化のプロセスドゥリNGのバイオミネラリゼーションが観察されます。変態の急速なプロセスは、炭酸カルシウム構造体7,8の出現を含みます。

我々はtubeworm上で実行することができますどのように内部のpH測定を実証し、ライフステージや石灰化に関連する組織がどのようにスクリーニングすることができます。関心のライフステージが識別された後、石灰化を担当する組織は、電子顕微鏡法を用いて、高い解像度で特徴づけることができます。蛍光顕微鏡を使用して、我々は、変成誘導後に表示されるように、炭酸カルシウムのために必要な時間を決定します。人生の類似の段階が続いて元素の組成分布のためのSEM-EDSで可視化し、析出した鉱物は、二つの異なる電子顕微鏡法、特にSEM-EBSDとFIB-TEMを用いて分析しました。

Protocol

1.ライフステージのためのスクリーニングとライブイメージングと関心のある組織以前に報告された方法6、7、9に記載のコンピテンシーに文化海洋幼虫。一晩10μMSNARF-1 AMでろ過海水でmLの密度あたり5幼虫でtubeworm幼虫をインキュベートします。光退色からの蛍光プローブを保護するためにアルミホ…

Representative Results

tubewormの変態時の石灰化プロセスのいくつかの観察結果は以下のとおりです。 図1は、カラー領域の近くのpH値は、変態後の他の組織よりも高いことを示しています。 図2iが重大な石灰化イベントが始まっていない示唆し、カルシウムが均一に分散しているtubewormを示しています。 図2IIは、関心のある時点を超えてし?…

Discussion

ライブ光学イメージングは​​、多細胞生物において、細胞事象を観察するための有用な方法です。ここでは、内部pHおよびカルシウムイオン指示薬は、石灰化部位におけるイオンのフラックスを測定しました。これらの地域では、活性イオンポンプは石灰化2、3有効にするために、pHおよびCa 2+濃度を上昇させるために必要とされます。?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to send a big thank you to Clemson Broadcast Productions, audio recording by J. Bright, Narration by A. D. McQuiston, Audio sweetening, K. Murphy, videography by G. Spake, Graphic arts by T. Messervy, Video editing by T. Messervy and E. Rodgers. Technical assistance and scientific advice was inspired by the advice of S. Kawada, S. Kubo, J. Hudson, T. Darroudi, D. Mulwee, H. Qian, Y. W. Lam, M. B. Johnstone, C. Campanati, A. C. Lane, and R. Dineshram. This study was funded by three GRF grants from the HKSAR-RGC (Grant Numbers: 705511P, 705112P, and 17304914).

Materials

Hexamethyldisilazane  Electron Microscopy Sciences 16700(EM)
Osmium Tetroxide 2% Aqueous Solution Electron Microscopy Sciences 19192
IBMX 3-Isobutyl-1-methylxanthine ThermoFisher Scientific PHZ1124
Nigericin, Free Acid ThermoFisher Scientific N7143-5MG
35-mm-diam dish, hole size 27 mm, Glass No.0, Non-coat ThermoFisher Scientific D110400
5-(and-6)-Carboxy SNARF-1, Acetoxymethyl Ester, Acetate ThermoFisher Scientific C-1271
BDH Potassium Chloride, ACS Grade VWR BDH0258-500G
Paraformaldehyde
reagent grade, crystalline
Sigma P6148
1 M Hydrochloric Acid for Volumetric Analysis Wako Pure Chemical Industries, Ltd 083-01095
0.05 M Sodium Hydroxide Solution for Volumetric Analysis Wako Pure Chemical Industries, Ltd 199-02185
Calcein Sigma C0875
FASW Iwaki Co. Ltd. Rei-sea Marine
Mixed Cellulose Ester Membranes; 47 mm dia, 0.45 µm ADVANTEC A045A047A
ethanol Wako Pure Chemical Industries, Ltd 051-00476
Artificial seawater for buffers by SOP06 of DOE (1994), cdiac.ornl.gov/ftp/cdiac74/sop06.pdf
Sodium Chloride Wako Pure Chemical Industries, Ltd 191-01665
Potassium Chloride Wako Pure Chemical Industries, Ltd 163-03545
Magnesium Chloride Hexahydrate Wako Pure Chemical Industries, Ltd 135-00165
Calcium Chloride Wako Pure Chemical Industries, Ltd 039-00475
Sodium Sulfate Wako Pure Chemical Industries, Ltd 197-03345
Hydrochloric Acid Wako Pure Chemical Industries, Ltd 089-08415
2-amino-2-hydroxymethyl-1,3-propanediol (tris) Wako Pure Chemical Industries, Ltd 207-06275
2-aminopyridine Wako Pure Chemical Industries, Ltd 011-02775
Orion 5-star Plus pH meter Thermo Scientific
PrpHecT ROSS Micro Combination pH Electrode 8220BNWP Thermo Scientific
Axiovision, Version 4.6, Axio Observer Z1 Zeiss
ImageJ NIH, Bethesda, MD, USA
HRTEM H500 Hitachi
SU6600 VPSEM Hitachi
NB5000 Focused Ion and Electron Beam (FIB-SEM) system Hitachi 

References

  1. Aizenberg, J., et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 309 (5732), 275-278 (2005).
  2. de Nooijer, L. J., Toyofuku, T., Oguri, K., Nomaki, H., Kitazato, H. Intracellular pH distribution in foraminifera determined by the fluorescent probe HPTS. Limnol Oceanogr Methods. 6 (11), 610-618 (2008).
  3. de Nooijer, L. J., Langer, G., Nehrke, G., Bijma, J. Physiological controls on seawater uptake and calcification in the benthic foraminifer Ammonia tepida. Biogeosciences. 6 (11), 2669-2675 (2009).
  4. Smith, A. M., Riedi, M. A., Winter, D. J. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar Biol. 160 (9), 1-14 (2013).
  5. Carpizo-Ituarte, E., Hadfield, M. Stimulation of metamorphosis in the polychaete Hydroides elegans Haswell (Serpulidae). Biol. Bull. 194 (1), 14 (1998).
  6. Bryan, P. J., Kreider, J. L., Qian, P. Y. Settlement of the serpulid polychaete Hydroides elegans (Haswell) on the arborescent bryozoan Bugula neritina (L.): evidence of a chemically mediated relationship. J Exp Mar Biol Ecol. 220, 171-190 (1998).
  7. Chan, V. B. S., et al. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. J. Struct. Biol. 189 (3), 230-237 (2015).
  8. Dickson, A. G., Goyet, C. . Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. , (1994).
  9. Chan, V. B. S., et al. Direct deposition of crystalline aragonite in the controlled biomineralization of the calcareous tubeworm. Front Mar Sci. 2, 97 (2015).
  10. Bond, J., Varley, J. Use of flow cytometry and SNARF to calibrate and measure intracellular pH in NS0 cells. Cytometry A. 64, 43-50 (2005).
  11. Lloyd, G. E. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag. 51, 3-19 (1987).
  12. Perez-Huerta, A., Dauphin, Y., Cuif, J. P., Cusack, M. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells. Micron. 42 (3), 246-251 (2011).
  13. Bandli, B. R., Gunter, M. E. Electron backscatter diffraction from unpolished particulate specimens: examples of particle identification and application to inhalable mineral particulate identification. Am. Mineral. 97, 1269-1273 (2012).
  14. Hayat, M. A. . Principles and techniques of electron microscopy: biological applications. , (2000).
  15. Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geo. 261, 217-229 (2009).
  16. Volkert, C. A., Minor, A. M. Focused ion beam microscopy and micromachining. MRS Bull. 32, 389-399 (2007).
  17. Kudo, M., et al. Microtexture of larval shell of oyster, Crassostrea nippona: A FIB-TEM study. J. Struct. Biol. 169 (1), 1-5 (2009).
check_url/55164?article_type=t&slug=characterization-calcification-events-using-live-optical-electron

Play Video

Cite This Article
Chan, V. B. S., Toyofuku, T., Wetzel, G., Saraf, L., Thiyagarajan, V., Mount, A. S. Characterization of Calcification Events Using Live Optical and Electron Microscopy Techniques in a Marine Tubeworm. J. Vis. Exp. (120), e55164, doi:10.3791/55164 (2017).

View Video