Summary

ホスト表現型の検討で<em>カダヤシアフィニス</em>続き抗生物質治療

Published: February 22, 2017
doi:

Summary

この研究は、抗生物質により、皮膚や腸のmicrobiomeコミュニティ組成の変化を以下のモデル魚のホストへの影響を明らかにするためのメソッドが含まれます。

Abstract

The commonality of antibiotic usage in medicine means that understanding the resulting consequences to the host is vital. Antibiotics often decrease host microbiome community diversity and alter the microbial community composition. Many diseases such as antibiotic-associated enterocolitis, inflammatory bowel disease, and metabolic disorders have been linked to a disrupted microbiota. The complex interplay between host, microbiome, and antibiotics needs a tractable model for studying host-microbiome interactions. Our freshwater vertebrate fish serves as a useful model for investigating the universal aspects of mucosal microbiome structure and function as well as analyzing consequential host effects from altering the microbial community. Methods include host challenges such as infection by a known fish pathogen, exposure to fecal or soil microbes, osmotic stress, nitrate toxicity, growth analysis, and measurement of gut motility. These techniques demonstrate a flexible and useful model system for rapid determination of host phenotypes.

Introduction

抗生物質が微生物群集の不均衡を意味し、腸内毒素症につながる人間microbiomeを混乱させることができることが確立されています。抗生物質治療後の細菌叢の組成の変化は、特に腸管1、2に、地域社会の多様性を下げる主要メンバーを削減し、地域社会の代謝を変化させることが示されています。腸microbiomeの抗生物質の乱れがクロストリジウム・ディフィシレ 3,4及びサルモネラ 5にコロニー形成抵抗を低減することができます。

さらに、微生物の破壊は、多くの症候群およびヒトにおける疾患の発症に関連している( 例えば、抗生物質に関連する腸炎、炎症性腸疾患、代謝障害、 など )。抗生物質も広くにおける成長促進剤として農業に実装されています家畜や家禽の生産6。これらの強力なツールの使用方法は、抗生物質耐性の急速な上昇に明らかである、担保の効果がないわけではないだけでなく、破壊されたmicrobiomeの効果は、その生息ホストとされています。多くの研究は、広域スペクトル抗生物質の使用量は細菌叢の構造と機能に長期的な影響を持っていることが示されている、まだ抗生物質破壊microbiome影響を与えるホスト生理学から副作用がサポートされるには至っていない唯一の憶測です。

ホスト、微生物、および抗生物質間の相互作用ははるかに簡潔な方法で理解されているからです。したがって、簡単かつより扱いやすいモデルは、非常に複雑な哺乳動物系に光を流すことが有利です。腸を含むヒトで粘膜表面も、最高密度や微生物の多様性、および最も親密な微生物宿主相互作用を抱きます。魚の粘膜皮膚microbiomeがsを提供していますモデル系としてeveral利点。 真骨類 (硬骨魚)は、硬骨魚類は、先天性および共生細菌群集7との関係共進化してきた免疫系を獲得したの両方を持っていることを意味する脊椎動物の中に発散する最古の系統の一つです。魚皮共有生理機能、免疫コンポーネント、および粘液産生細胞8の配置のような哺乳動物の1型粘膜表面と多くの特徴。魚皮粘膜表面の外部の場所は、実験的に操作が容易とサンプルmicrobiomeを提供しています。

西カダヤシ、 カダヤシのアフィニス(G. アフィニス)は 、交配および毒物学9、10、11研究するために過去に使用されてきたモデルの魚です。外来種として野生の小さなサイズ、人口豊かさを考えると、メートル inimalケアコスト、および丈夫な性質は、我々は、粘膜microbiomeモデルとしてG.アフィニスを開発ました。さらに、 カダヤシは、魚種では珍しいです胎生哺乳類、若い生きるために出産の生理を共有しています。私たちは、 カダヤシ 12とプロファイリング16Sを使用して、魚の皮膚の正常細菌叢の時点で最も広範な研究を完了しました。さらなる研究は、皮膚や腸の微生物叢の破壊広域スペクトル13抗生物質を使用して、次のホスト上の3つの負の効果を実証しました。

ファイブ異なる効果は、抗生物質曝露後の魚で調べました。 microbiomeの最もよく確立されたホストの利点は、病原体の競合的排除です。魚の病原体エドワードictaluriは、市販ナマズの農場14で腸溶性敗血症の発生を引き起こすことが知られています。 E. ictaluriはまた致死的にゼブラフィッシュに感染することが示されていますクラス= "外部参照"> 15、16、 カダヤシ 17。水柱からこの病原体でのチャレンジは、除外の尺度として役立つことができます。個々の病原体に対する感受性と比較するように、混合した有機体の高密度化への暴露時に生存も行いました。糞便や有機物に富む土壌は微生物群集のよく遭遇源として使用しました。

細菌性腸コミュニティが行うもう一つの確立された役割は、このように、ホストの全体的な栄養摂取に影響を与える、栄養処理とエネルギーの収穫です。栄養の肉眼的測定としては、魚の体重は標準食を与えたことの1ヶ月前後で比較しました。平均的に制御魚は月の上に体重が増えた一方で、平均のような抗生物質で処理した魚は重量を失いました。体重増加の欠如のためのメカニズムは不明です。一つの可能​​性のある要因には、腸内の食物の通過時間です。 GIモティリティメソッドは通過時間を決定するためにゼブラフィッシュ(アダム・リッチ、SUNYブロックポート、私信)から適合させました。抗生物質処理した魚は、変更された通過時間を有する場合には、まだ決定されていません。

すべての生物が自然環境の中で経験した共通の課題、特に魚は、浸透圧ストレスです。 カダヤシは急性塩分18の高濃度で強調したときに迅速に対応することが示されています。驚くべきことに、展示抗生物質に変化したmicrobiomeと魚は高い塩ストレスに生存率を低下させました。この小説の表現型のメカニズムは調査中です。特に水槽内の水生動物、上の別の一般的なストレスは、有毒な窒素の形態(アンモニア、硝酸、亜硝酸)です。硝酸塩に対する生存率は、抗生物質処置群および対照魚の間で有意差はなかったです。この原稿に提示される方法は、 カダヤシや、ゼブラと同様の魚のモデル生物で使用することができます魚やメダカは、実験操作以下の魚における表現型を測定します。

Protocol

全ての動物実験は、IACUCプロトコルの承認の下で行われ、14-05-05-1018-3-01 13-04-29-1018-3-01、および14-04-17-1018-3-01の番号を付けました。 1.動物コレクション、取り扱い、および倫理的ケア 19 Lのバケットに小さなディップネットと場所を使用して、現場(http://www.sms.si.edu/irlspec/Gambusia_affinis.htmで識別ガイド)からカダヤシアフィを収集します。種を同定するために目視検査…

Representative Results

抗生物質曝露13から魚ホストの影響を研究するために用いた実験装置の全体概略図を図1Aに表され、魚の皮膚( 図1B)および腸( 図1C)microbiomesを抽出するための技術を含みます。以前のデータは、総皮膚培養可能数は、早期治療で低下している間、それは3日後に治療前のレベルに戻っていることが明らかになっ…

Discussion

いくつかの課題は、魚組織に枯渇させる薬物のための抗生物質治療後の清潔なAPWで休止期間を必要とします。休止期間がスキップされている場合は、抗生物質の存在は、アッセイは、細菌への曝露を伴う場合は特に、結果を混乱させることができます。ホスト上の微生物の合計数に大きな変化なしに変更されたmicrobiome組成物からの影響を調べるために、抗生物質の露光中に予備実験監視microb…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This project was partially funded by a FAST (Faculty and Student Team) Award to TPP and JMC from EURECA (Center for Enhancing Undergraduate Research Experiences and Creative Activities) at Sam Houston State University.

Materials

Rifampicin Calbiochem 557303-1GM
Sodium Nitrate Sigma Aldrich S5506
Fluorescein-labeled 70 kDa anionic dextran ThermoFisher Scientific D1823
PBS tablets Calbiochem 6500-OP tablets dissolve in water to make phosphate-buffered saline

References

  1. Panda, S., et al. Short-Term Effect of Antibiotics on Human Gut Microbiota. PloS ONE. 9 (4), 95476 (2014).
  2. Perez-Cobas, A. E., et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut. 62 (11), 1591-1601 (2013).
  3. Theriot, C. M., Young, V. B. Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes. 5 (1), 86-95 (2014).
  4. Buffie, C. G., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 517, 205-208 (2015).
  5. Sekirov, I., et al. Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection. Infect Immun. 76 (10), 4726-4736 (2008).
  6. Looft, T., Allen, H. K. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes. 3 (5), 463-467 (2012).
  7. Magnadottir, B. Innate immunity of fish. Fish Shellfish Immunol. 20 (2), 137-151 (2006).
  8. Gomez, D., Sunyer, J., Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 35 (6), 1729-1739 (2013).
  9. Nunes, B., et al. Acute Effects of Tetracycline Exposure in the Freshwater Fish Gambusia holbrooki: Antioxidant Effects, Neurotoxicity and Histological Alterations. Arch Environ Contam Toxicol. 68 (2), 331-381 (2014).
  10. Fryxell, D. C., et al. Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish. Proc Biol Sci. , 22 (2015).
  11. Nunes, B., Miranda, M. T., Correia, A. T. Absence of effects of different types of detergents on the cholinesterase activity and histological markers of mosquitofish (Gambusia holbrooki) after a sub-lethal chronic exposure. Environ Sci Pollu Res Int. , 1-8 (2016).
  12. Leonard, A. B., et al. The Skin Microbiome of Gambusia affinis Is Defined and Selective. Adv Microbiol. 4, 335-343 (2014).
  13. Carlson, J. M., Hyde, E. R., Petrosino, J. F., Manage, A. B. W., Primm, T. P. The host effects of Gambusia affinis with an antibiotic-disrupted microbiome. Comp Biochem Physiol C Toxicol Pharmacol. 178, 163-168 (2015).
  14. Karsi, A., Gulsoy, N., Corb, E., Dumpala, P. R., Lawrence, M. L. High-throughput bioluminescence-based mutant screening strategy for identification of bacterial virulence genes. Appl Environ Microbiol. 75 (7), 2166-2175 (2009).
  15. Hawke, J. P., et al. Edwardsiellosis caused by Edwardsiella ictaluri in Laboratory Populations of Zebrafish Danio rerio. J Aquat Anim Health. 25 (3), 171-183 (2013).
  16. Petrie-Hanson, L., et al. Evaluation of Zebrafish Danio rerio as a Model for Enteric Septicemia of Catfish (ESC). J Aquat Anim Health. 19 (3), 151-158 (2007).
  17. Fultz, R. S., Primm, T. P. A Laboratory Module for Host-Pathogen Interactions: America’s Next Top Model. J. Microbiol. Biol. Educ. 11, (2010).
  18. Uliano, E., Cataldi, M., Carella, F., Migliaccio, O., Iaccarino, C. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comp Biochem Physiol A. 157, 283-290 (2010).
  19. Shotts, E. B., Waltman, W. D. A medium for the selective isolation of Edwardsiella ictaluri. J Wildl Dis. 26, 214-218 (1990).
  20. Under animal toxicity studies, sodium chloride entry. TOXNET – Hazardous Substances Data Bank Available from: https://toxnet.nlm.nih.gov/ (2016)
  21. Under animal toxicity studies, sodium nitrate entry. TOXNET – Hazardous Substances Data Bank Available from: https://toxnet.nlm.nih.gov/ (2016)
  22. Under animal toxicity studies, sodium nitrite entry. TOXNET – Hazardous Substances Data Bank Available from: https://toxnet.nlm.nih.gov/ (2016)
  23. Vilz, T. O., et al. Functional Assessment of Intestinal Motility and Gut Wall Inflammation in Rodents: Analyses in a Standardized Model of Intestinal Manipulation. J Vis Exp. (67), e4086 (2012).
  24. Katoh, H. International Harmonization of Laboratory Animals. National Research Council (US) International Committee of the Institute for Laboratory Animal Research. Microbial Status and Genetic Evaluation of Mice and Rats: Proceedings of the 1999 US/Japan Conference. , (2000).

Play Video

Cite This Article
Carlson, J. M., Chavez, O., Aggarwal, S., Primm, T. P. Examination of Host Phenotypes in Gambusia affinis Following Antibiotic Treatment. J. Vis. Exp. (120), e55170, doi:10.3791/55170 (2017).

View Video