Summary

En tilpasses Chamber til måling Cell Migration

Published: March 12, 2017
doi:

Summary

Denne protokol detaljer en tilpasselig metode til at måle cellemigrering som respons på kemoattraktanter, som også kan anvendes til bestemmelse af diffusionshastigheden af ​​et lægemiddel ud af en polymer matrix.

Abstract

Cell migration er en vital del af immunreaktioner, vækst og sårheling. Cellemigrering er en kompleks proces, der involverer interaktioner mellem celler, den ekstracellulære matrix, og opløselige og ikke-opløselige kemiske faktorer (f.eks kemoattraktanter). Standardmetoder til måling af migration af celler, såsom Boyden kammer assay arbejde ved at tælle celler på hver side af en skillevæg. Disse teknikker er nemme at bruge; De tilbyder dog lidt geometrisk modifikation til forskellige applikationer. I modsætning hertil kan mikrovæskeanordninger anvendes til at observere cellemigrering med tilpasselig koncentrationsgradienter af opløselige faktorer 1, 2. fremgangsmåder til fremstilling mikrofluidik baserede assays kan imidlertid være svært at lære.

Her beskriver vi en nem metode til at skabe cellekultur kamre til måling cellemigrering som respons på kemiske koncentrationsgradienter. Vores celle migration kammer metode kan skabe forskellige lineære koncentrationsgradienter for at studere cellemigrering til en lang række applikationer. Denne metode er relativt let at bruge og udføres typisk ved studerende.

Mikrokanalplade Kammeret blev skabt ved at anbringe en acryl insert i form af den endelige mikrokanalplade kammer brønd i en petriskål. Herefter blev poly (dimethylsiloxan) (PDMS) hældes på toppen af ​​indsatsen. PDMS fik lov at hærde, og derefter insertet blev fjernet. Dette gav mulighed for etablering af brønde i enhver ønsket form eller størrelse. Celler kan tilsættes efterfølgende til mikrokanalplade kammeret, og opløselige midler kan tilsættes til en af ​​brøndene ved neddypning en agarose blok i ønsket middel. Agarose blok sættes til en af ​​brøndene, og time-lapse billeder kan tages af mikrokanalplade kammer for at kvantificere cellemigrering. kan foretages variationer af denne metode for en given anvendelse, hvilket gør denne metode HIGHly tilpasses.

Introduction

In order for vital processes such as wound healing, immune responses, and embryonic development to occur, cell migration must take place. Cell migration involves the interaction between cells and neighboring cells, the extracellular matrix, and soluble chemical cues (attractants or repellants). As an example, in the process of wound healing, fibroblasts play an integral role in fibrogenesis and wound contraction, where the cells are recruited to the site of injury to synthesize collagen in order to form the extracellular matrix3. Numerous mechanisms behind the migration of fibroblasts to a wound site have been studied, and they include different mechanical, physical, electrical, and chemotactic factors4. Fibroblasts respond especially well to different concentration gradients of growth factors. These different growth factors work together to optimize tissue regeneration5. While observing the chemotactic response of fibroblasts to growth factor concentrations, one can study the pattern of directional migration of fibroblasts and how they orient themselves around physical obstacles in order to reach their destination. Therefore, the goals of this study were to first develop a system in which fibroblast growth could be tracked under guidance by physical barriers and to secondly model the growth of fibroblasts as they navigate through the system.

Currently, the Boyden chamber assay is the most widely used system to measure the migration of cells6. The Boyden chamber consists of a two-chamber multi-well plate where each well may contain medium with or without chemoattractants7. A filter membrane provides a porous interface between the two chambers in each well; this creates a barrier so that cells cannot pass through unless it is by active migration. Typically, for the Boyden chamber, a chemoattractant is added to the lower chamber, and the system is allowed to equilibrate to form a gradient between the upper and lower wells4. One problem with the Boyden chamber assay is that steep gradients end up forming along a single axis perpendicular with the surface of the membrane. This causes the difference in the chemoattractant concentration between the upper and lower wells to be a lower than what was originally expected. Due to this constraint, the Boyden chamber assay makes it hard to correlate specific cell responses with particular gradient characteristics, such as the slope and the concentration difference. Without these measurements, it is hard to study multi-gradient signal integration.

To address some of the constraints of the traditional Boyden chamber assay, microfluidic assays have been developed to form customizable concentration gradients1. Standard methods for creating microfluidic systems require clean rooms for lithographic techniques. These techniques can be difficult to learn especially in a standard classroom setting. Thus, we have designed a chamber system for measuring cell migration that can be made without using a clean room. Using our system, the wells of the assay can be adjusted to a preferred size, and a linear concentration gradient of customized slope can be produced. This allows for accurate measurement of chemotaxis from random movement. The design is an inexpensive and easy-to-use system to model cell growth in response to different chemical stimuli.

Protocol

1. Producere en mikrokanalplade Afdeling oprettes en koncentrationsgradient Skæring en akryl støbeformdel Opnå et stykke acryl af den ønskede bredde. Typisk bruger 1/16-tommer-tykke acrylplader. Tykkere plader er vanskelige at skære godt og meget tynde plader har ikke den fornødne mekaniske styrke, hvilket får dem til at bryde eller kæde under processen. Opret en CAD-fil med den ønskede form af den acryliske stykke for at frembringe et hulrum i polydimethylsiloxan …

Representative Results

Figur 2 viser bevægelsen af cellen foran over kanalen som reaktion på en gradient af kalvefosterserum placeret i den modsatte ende af kanalen, hvorfra cellerne udplades. Cellen foran er vist ved 48 timer (figur 2A), 72 timer (figur 2B), 96 h (Figur 2C), og 120 timer (figur 2D) efter udpladning. Bevægelsen af ​​cellen fronten blev sporet med disse time-lapse billeder, og migrationen afstand og væk…

Discussion

Vores mikrokanalplade kammer kan anvendes til en lang række formål, herunder bestemmelse af vandringshastigheden celle som reaktion på vækstfaktorer og kemoattraktanter og måle diffusionshastigheden af ​​et lægemiddel fra en polymermatrix. Det er muligt at anvende vores mikrokanalplade kammer til at vokse celler og placere en kemoattraktant i den ene ende af kammeret. Cellerne vokser som reaktion på kemoattraktanten, og migrationen celle kan kvantificeres ved at tage time-lapse billeder, der kan analyseres fo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne anerkender Clemson University Creative Inquiry program og NSF CBET1254609 for at yde støtte til dette projekt.

Materials

Sylgard 184 Silicone Elastomer Kit Sigma-Aldrich 761036 poly(dimethylsiloxane) 2-part kit including silicone elastomer base and silicone elastomer curing agent
Acrylic Sheets US Plastic 44200
Disposable Petri Dishes  Falcon  25373-041
Fluorescein isothiocyanate–dextran Sigma-Aldrich FD20s-100MG
Agarose, Type I, Low EEO Sigma-Aldrich A6013-100G
Dulbecco's Modified Eagle's Medium Fisher Scientific 11965092 Cell media components
Fetal Bovine Serium Fisher Scientific 16000036 Cell media components
Penicillin-streptomycin Fisher Scientific 15140148 Cell media components
Phosphate Buffered Saline (PBS) Fisher Scientific BP24384
EVOS XL Cell Imaging System Thermo Fisher Scientific AME3300 Instrument used for taking time-lapse images
Versa LASER Universal Laser Systems, Inc.  Model number VLS2.30 Laser cutter used for cutting plastic

References

  1. Sia, S. K., Whitesides, G. M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis. 24 (21), 3563-3576 (2003).
  2. Lin, F., et al. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip. 4 (3), 164-167 (2004).
  3. Darby, I., Hewitson, T. Fibroblast Differentiation in Wound Healing and Fibrosis. Int Rev Cytol. 257, 143-179 (2007).
  4. Thampatty, B. P., Wang, J. H. -. C. A new approach to study fibroblast migration. Cell Motil Cytoskel. 64, 1-5 (2007).
  5. Discher, D., Mooney, D., Zandstra, P. Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science. 324, 1673-1677 (2009).
  6. Zengel, P., et al. µ-Slide Chemotaxis: A new chamber for long-term chemotaxis studies. BMC Cell Biol. , (2011).
  7. Chen, H. Boyden Chamber Assay. Methods Molec Biol. 2, 15-22 (2005).
  8. Safferling, K., et al. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. JCB. 203 (4), 691-709 (2013).
  9. Saadi, W., et al. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices. 9, 627-635 (2007).
  10. Cammer, M., Cox, D. Chemotactic Responses by Macrophages to a Directional Source of a Cytokine Delivered by a Micropipette. Methods Mol Biol. , 125-135 (2014).
  11. Zicha, D., Dunn, G. A., Brown, A. F. A new direct-viewing chemotaxis chamber. J Cell Sci. 99 (4), 769-775 (1991).
  12. Wells, C. M., Ridley, A. J. Analysis of cell migration using the Dunn chemotaxis chamber and time-lapse microscopy. Methods Mol Biol. , 31-41 (2005).
  13. Liang, C. C., Park, A. Y., Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329-333 (2007).
  14. Chen, Y. C., et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 5, (2015).
  15. Wright, G. A., et al. On-chip open microfluidic devices for chemotaxis studies. Microsc. Microanal. 18 (04), 816-828 (2012).
  16. Adler, M., Polinkovsky, M., Gutierrez, E., Groisman, A. Generation of oxygen gradients with arbitrary shapes in a microfluidic device. Lab Chip. 10 (3), 388-391 (2010).
  17. Huang, Y., Agrawal, B., Sun, D., Kuo, J. S., Williams, J. C. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics. 5 (1), 013412 (2011).
  18. Taylor, A. M., Rhee, S. W., Jeon, N. L. Microfluidic chambers for cell migration and neuroscience research. Microfluid Tech: Rev Protoc. , 167-177 (2006).
  19. Tang, S. K., Whitesides, G. M., Fainman, Y., Lee, L., Psaltis, D., Yang, C. . Basic microfluidic and soft lithographic techniques. Optofluidics: Fundamentals, Devices and Applications. , (2010).
  20. Taylor, A. M., et al. Microfluidic multicompartment device for neuroscience research). Langmuir. 19 (5), 1551-1556 (2003).
  21. Aidelberg, G., Goldshmidt, Y., Nachman, I. A Microfluidic Device for Studying Multiple Distinct Strains. JoVE. (69), (2012).
check_url/55264?article_type=t

Play Video

Cite This Article
Chowdhury, A. N., Vo, H. T., Olang, S., Mappus, E., Peterson, B., Hlavac, N., Harvey, T., Dean, D. A Customizable Chamber for Measuring Cell Migration. J. Vis. Exp. (121), e55264, doi:10.3791/55264 (2017).

View Video