Summary

Ovine Lumbar椎间盘退变模型利用横向腹膜后位钻伤

Published: May 25, 2017
doi:

Summary

椎间盘退变是背部疼痛的重要原因,也是全球残疾的主要原因。存在许多椎间盘退变的动物模型。我们展示了椎间盘退变的羊模型,利用钻头,实现了一致的椎间盘损伤和椎间盘退变的可重复水平。

Abstract

椎间盘退变是背部疼痛发展和全球残疾的主要原因的重要因素。已经开发了许多椎间盘退变的动物模型。关于形态学,生物力学性质和无脊髓细胞的缺失,理想的动物模型应该密切地模拟人椎间盘。绵羊腰椎间盘模型符合这些标准。我们通过侧腹膜后方法,利用钻头损伤呈现椎间盘退变的羊模型。横向方法显着减少了与传统的前路方法相关的切口和潜在发病率。使用钻头方法的伤害提供了产生一致和可重复的损伤,精确尺寸的能力,从而引发一致程度的椎间盘退变。环形的焦点性质髓核缺损更密切地模拟了局限性椎间盘突出症的临床状况。羊按照这个程序迅速恢复,通常是在一小时内移动和进食。随后发生椎间盘退变,羊进行尸检和随后的分析。我们认为椎间盘退变的钻头损伤模型比较传统的环形损伤模型具有优势。

Introduction

下背痛是全世界残疾的主要原因1 。腰椎间盘退变相关性椎间盘突出症被认为是下腰痛的重要原因之一2 。对可靠的椎间盘疾病动物模型的需求不断增加,以扩大对退行性过程的理解和潜在疗法的调查。

存在许多椎间盘退变的动物模型3 。用于调查退行性椎间盘疾病的动物模型的大小范围从小鼠4到较大的哺乳动物如狗5 ,绵羊6和非人灵长类动物7 。用于诱导椎间盘退变的方法可以大致分为机械类( 例如椎间盘缩小术) n 8或手术损伤6 ),化学( 例如化学性核解解5 )或较不常见的自发性变性( 例如沙鼠9 )。

鉴于人椎间盘退变的复杂性,不存在完美的动物模型。然而,在选择合适的动物模型以模拟这种情况的重要考虑已经被确定3 。这样的考虑包括:没有脊索细胞(原始细胞具有可能的祖细胞功能10,不存在于人,绵羊,山羊和软骨营养不良犬中的成年髓核,但存在于大多数哺乳动物中),动物相对于人和椎间盘尺寸相似,可比的生物力学临床条件,机制和伦理考虑3

非人类灵长类动物符合上述许多标准,自发性椎间盘退变的狒狒和猕猴模型已被描述为11,12,13 两种物种在直立或半直立的姿势中花费大量的时间 – 一个明显的优势然而,道德和实际的考虑( 例如费用,住房,自发性退化的延迟发作)限制在许多机构中的使用。

羊脊柱是椎间盘退变的确定模型,其优点包括细胞,生物力学和解剖学相似于人类脊柱10,14,15。尽管绵羊的四足身材,羊腰椎间盘暴露于人类椎间盘的相似应力s =“xref”> 14。羊胎模型从伦理角度也比非人类灵长类动物模型更受广泛接受。已经描述了各种方法来启动退行性过程,其中许多方法需要直接进入椎间盘。由于脊髓在骶骨区域的终止以及后腰纵韧带在卵巢腰椎骨化,椎间盘后路接近技术上具有挑战性,较不常见于羊16 。通过前路或前外侧入路的羊腰椎的传统通路需要大的腹部切口,充满疝风险,损害内脏和神经血管结构16 。使用相对较小的外侧切口远离依赖性腹部区域可能会降低这种风险17

我们提出一个羊退行性腰椎间盘疾病使用微创外侧方法进行的钻头损伤,并受到张的工作的启发。 al 18 。该协议的目的是使可靠的腰椎间盘损伤模型易于重复,产生一致的伤害,并且是安全和良好耐受的。这种方法非常适合于寻求诱导较轻度的腰椎间盘退变的研究者,而不是用传统手术瓣膜切开术(未发表的数据)观察椎间盘退变或再生疗法。这些发现将在即将出版的出版物中进行描述。

Protocol

本手稿中详细列出的方案遵循蒙纳士大学动物伦理学的动物保健指南。该议定书的动物伦理批准已经由蒙纳士大学动物伦理学授予。伦理批准号:MMCA / 2014/55 绵羊准备注意:使用二至四岁的母羊。 快羊在麻醉前18小时。在运动前6-12小时,让动物进入水中。 通过静脉注射盐酸米托咪啶(0.015-0.020 mg / kg)镇静动物,以方便转移到手术套件。 <br…

Representative Results

术前,羊进行基线3T磁共振成像(MRI)评估潜在的椎间盘形态和变性。羊进行额外的术中横向X线检查以确认椎间盘水平和计算椎间盘高度指数。来自3T MRI和术中X光片的术前矢状面切片如图1所示 。 图1:手术前3T MRI( A )和术中横向射线?…

Discussion

这种微创侧向通道方法是有效和安全的,没有手术后疝气,腹部伤口开裂或感染在本系列中观察到。使用具有深度停止的钻头椎间盘损伤模型提供了一种可重现的方法,引起已知尺寸( 本研究中的3.5mm直径×12mm深度损伤)的一致的椎间盘损伤。根据我们的经验,该方法比传统描述的羊手术刀片腰椎间盘切开术模型6,22(未发表的数据)中观察到的椎间盘退变程度低得多。这将在即将出版的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Chris Daly博士是“手术基金会Richard Jepson研究奖学金”的获得者。作者要感谢Anne Gibbon博士,Dong Zhang博士和Monash University Monash Animal Services的工作人员对动物手术和护理的协助。

Materials

Medetomidine Hydrochloride (10 mL Injection) Therapon/Zoetis PFIDOM10 Multiple suppliers: Zoetis/Ilium
Thiopentone Troy Triothiopentone Multiple suppliers: Neon Laboratories, Jagsonphal Pharmaceuticals
Isoflurane (2-3 % in oxygen) Baxter AHN3636 Multiple suppliers: Baxter/VetOne
Amoxicillin parenteral GlaxoSmithKline JO1CA04 Multiple suppliers: GlaxoSmithKline/Merck
Bupivacaine (0.5% Injection 20 mL) Pfizer 005BUP001 Multiple suppliers: Pfizer/AstraZeneca
PVD Iodine Solution Jurox 61330 Multiple suppliers: Jurox/Orion
Chlorhexidine 5%w/v Jurox Chlorhex C 5L (SCRUB) Multiple suppliers: Jurox/Pfizer
Transdermal Fental Patch (75 μg/h) Janssen-Cilag S8-Dur7.5 Multiple suppliers: Sandoz
Buprenorphine iv Jurox 504410 Multiple suppliers: LGM Pharma
Atipamezole (Antisedan 0.06 mg/kg – 0.08 mg/kg) Zoetis PFIANT10 Multiple suppliers: Ilium
Oster Golden A5 2-Speed Clippers Oster 078005-140-003 Oster
20 ml luer lock syringe Terumo 6SS+20L Multiple suppliers: Medshop Australia/Terumo
21 G IV needle Terumo SG3-1225 Multiple suppliers:Medshop Australia/Terumo
#4 scalpel handle Austvet AD010/04 Multiple suppliers: Austvet/SurgicalInstruments
#22 scalpel baldes Austvet
Gillies tissue forceps Austvet AB430/15 Multiple suppliers: Austvet/SurgicalInstruments
Metzenbaum curved dissecting scissors Austvet AC101/14 Multiple suppliers: Austvet/SurgicalInstruments
Deaver retractor Surgical Instruments 23.75.03 Multiple suppliers: Surgical Instrument/Austvet
Hohmann retractor Austvet KA173/35 Multiple suppliers: Austvet/SurgicalInstruments
Mayo suture scissors Austvet AC911/14 Multiple suppliers: Austvet/SurgicalInstruments
Needleholder 14 cm  EliteMedical 18-1030 Multiple suppliers: EliteMedical/Austvet
CMT 3.5 mm Brad-Point Drill Carbatec 516-035-51 Multiple suppliers: Southeast Tool/Carbatec
Drill Bit Stop 4 mm Drill Warehouse 20121600 Multiple suppliers: Amazon
Bosch 10.8 V Cordless Angle Drill Get Tools Direct GWB10.8V-LIBB Multiple suppliers:Bunnings/Get Tools Direct
Autoclavable veterinary drill bag AustVet DRA043-AV AustVet
2-0 absorbable synthetic braided sutures Ethicon VCP335H Ethicon
3-0 absorbable synthetic braided sutures Ethicon VCP232H Ethicon
Siemens 3 Tesla Skyra Widebore MRI Siemens N/A Siemens
9.4 Tesla Agilent (Varian) MRI Agilent Technologies N/A Agilent Technologies
Atomscope HF 200 A Radiogaph Radlink 330003A Multiple Suppliers: Radlink/DLC Australia
Veterinary Pulse Oximiter DLC  192500A Multiple suppliers: DLC Australi Pty Ltd/AustVet

References

  1. Hoy, D., March, L., et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 73 (6), 968-974 (2014).
  2. Luoma, K., Riihimäki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., Lammine, A. Low back pain in relation to lumbar disc degeneration. Spine. 25 (4), 487-492 (2000).
  3. Daly, C., Ghosh, P., Jenkin, G., Oehme, D., Goldschlager, T. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic. BioMed Res Int. 2016 (3), 5952165 (2016).
  4. Sahlman, J., Inkinen, R., et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine. 26 (23), 2558-2565 (2001).
  5. Melrose, J., Taylor, T., Ghosh, P., Holbert, C. Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage: An experimental study in beagle dogs. Spine. 21 (1), (1996).
  6. Oehme, D., Goldschlager, T., Shimon, S., Wu, J. Radiological, Morphological, Histological and Biochemical Changes of Lumbar Discs in an Animal Model of Disc Degeneration Suitable for Evaluating the potential regenerative capacity of novel biological agents. J Tiss Sci Eng. , (2015).
  7. Platenberg, R. C., Hubbard, G. B., Ehler, W. J., Hixson, C. J. Spontaneous disc degeneration in the baboon model: magnetic resonance imaging and histopathologic correlation. J Med Primatol. 30 (5), 268-272 (2001).
  8. Iatridis, J. C., Mente, P. L., Stokes, I. A. F., Aronsson, D. D., Alini, M. Compression-Induced Changes in Intervertebral Disc Properties in a Rat Tail Model. Spine. 24 (10), 996 (1999).
  9. Silberberg, R., Aufdermaur, M., Adler, J. H. Degeneration of the intervertebral disks and spondylosis in aging sand rats. Arch Pathol Lab Med. 103 (5), 231-235 (1979).
  10. Alini, M., Eisenstein, S. M., et al. Are animal models useful for studying human disc disorders/degeneration. Eur Spine J. 17 (1), 2-19 (2007).
  11. Lauerman, W. C., Platenberg, R. C., Cain, J. E., Deeney, V. F. Age-related disk degeneration: preliminary report of a naturally occurring baboon model. J Spinal Disord. 5 (2), 170-174 (1992).
  12. Platenberg, R. C., Hubbard, G. B., Ehler, W. J., Hixson, C. J. Spontaneous disc degeneration in the baboon model: magnetic resonance imaging and histopathologic correlation. J Med Primatol. 30 (5), 268-272 (2001).
  13. Nuckley, D. J., Kramer, P. A., Del Rosario, ., Fabro, A., Baran, N., S, R. P., Ching, Intervertebral disc degeneration in a naturally occurring primate model: radiographic and biomechanical evidence. J Orthop Res. 26 (9), 1283-1288 (2008).
  14. Wilke, H. J., Kettler, A., Claes, L. E. Are sheep spines a valid biomechanical model for human spines. Spine. 22 (20), 2365-2374 (1997).
  15. Sheng, S. -. R., Wang, X. -. Y., Xu, H. -. Z., Zhu, G. -. Q., Zhou, Y. -. F. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J. 19 (1), 46-56 (2010).
  16. Oehme, D., Goldschlager, T., et al. Lateral surgical approach to lumbar intervertebral discs in an ovine model. Scientific World J. 2012 (8), 873726 (2012).
  17. Youssef, J. A., McAfee, P. C., et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 35 (Suppl 26), S302-S311 (2010).
  18. Zhang, Y., Drapeau, S., An, H. S., Markova, D., Lenart, B. A., Anderson, D. G. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine. 36 (19), 1519-1527 (2011).
  19. White, K., Taylor, P. Anaesthesia in sheep. In Practice. 22 (3), 126-135 (2000).
  20. Kandziora, F., Pflugmacher, R., et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine. 26 (9), 1028-1037 (2001).
  21. Oehme, D., Ghosh, P., et al. Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model. J Neurosurg Spine. 20 (6), 657-669 (2014).
  22. Hunter, C. J., Matyas, J. R., Duncan, N. A. Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat. 205 (5), 357-362 (2004).
  23. Hoogendoorn, R. J., Helder, M. N., Smit, T. H., Wuisman, P. Notochordal cells in mature caprine intervertebral discs. Eur Cells Mater. 10 (Suppl 3), (2005).
  24. Pohlmeyer, K. . Zur vergleichenden Anatomie von Damtier, Schaf und Ziege: Osteologie und postnatale Osteogenese. , (1985).
  25. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 26 (17), 1873-1878 (2001).

Play Video

Cite This Article
Lim, K., Daly, C. D., Ghosh, P., Jenkin, G., Oehme, D., Cooper-White, J., Naidoo, T., Goldschlager, T. Ovine Lumbar Intervertebral Disc Degeneration Model Utilizing a Lateral Retroperitoneal Drill Bit Injury. J. Vis. Exp. (123), e55753, doi:10.3791/55753 (2017).

View Video