Summary

Конфокальный изображений нейропептида Y-pHluorin: техника для визуализации экзоцитоз гранул инсулина в нетронутыми мышиных и человеческих островках

Published: September 13, 2017
doi:

Summary

Мы описываем протокол для визуализации экзоцитоз инсулина в нетронутыми островами с помощью pHluorin, рН чувствительных Зеленый флуоресцирующий белок. Изолированные островки заражены аденовирус кодирования pHluorin, в сочетании с везикул грузов нейропептида Y. Это позволяет для обнаружения инсулина гранул фьюжн событий confocal микроскопии.

Abstract

Секреции инсулина играет центральную роль в гомеостаз глюкозы при нормальных физиологических условиях, а также болезни. Нынешние подходы для изучения инсулина гранул экзоцитоз, либо использовать электрофизиологии или микроскопия, в сочетании с выражением флуоресцентные репортеры. Однако большинство из этих методов были оптимизированы для клоновых клеточных линий или требовать отделения панкреатических островков. В отличие от этого метод, представленные здесь позволяет для визуализации реального времени экзоцитоз гранул инсулина в нетронутыми панкреатических островков. В этом протоколе мы сначала описать вирусной инфекции изолированы панкреатических островков с аденовирус, который кодирует рН чувствительных Зеленый флуоресцентный белок (КГВ), pHluorin, в сочетании с нейропептида Y (NPY). Во-вторых мы описываем, конфокальная изображений из островков пять дней после вирусной инфекции и как контролировать гранул секреция инсулина. Кратко зараженных островков размещаются на coverslip на тепловизионные камеры и образы под вертикальное сканирование лазерного конфокального микроскопа при будучи постоянно увлажненную с внеклеточного раствор, содержащий различные стимулы. Конфокальный изображения, охватывающих 50 мкм островок приобретаются как покадровой записи с помощью быстро резонансный сканер. Синтез инсулина гранул с плазматической мембраны может следовать со временем. Эта процедура также позволяет для тестирования аккумулятора раздражителей в одном эксперименте, совместим с мыши и человеческих островках и могут быть объединены с различные красители для функциональных изображений (например, мембранный потенциал или цитозольной кальция красители).

Introduction

Инсулин вырабатывается бета-клетки поджелудочной островок и это ключевым регулятором метаболизма глюкозы1. Смерть или дисфункции бета-клеток нарушает гомеостаз глюкозы и приводит к диабета2. Инсулин, Упакованные в плотной ядра гранул, которые выпускаются в Ca2 +3зависимым образом. Разъяснение, как регулируется экзоцитоз гранул инсулина необходимо полностью понять, что определяет секреции инсулина и открывает новые возможности для определения новых терапевтических целей для лечения диабета.

Инсулин экзоцитоз широко изучен, с помощью электрофизиологических подходы, такие как измерения емкости мембраны и микроскопических подходов в сочетании с флуоресцентных молекул. Измерения емкости мембраны имеют хорошие временное разрешение и позволяют одну ячейку записи. Однако изменения в емкость отражают чистое изменение поверхности клетки и не захватывать события отдельных фьюжн или отличить инсулина гранул фьюжн от других инсулиннезависимым секреторные пузырьки3. Микроскопический подходы, такие как два фотона или полного внутреннего отражения микроскопии флуоресцирования (TIRF) в сочетании с флуоресцентных зондов и везикул грузов белков, предоставляют дополнительные подробности. Эти методы захвата одного-exocytotic событий, а также этапов до и после exocytotic и может быть использован для изучения exocytotic моделей в популяциях клеток3.

Флуоресцентный Репортеры могут быть трех типов: 1) внеклеточная, 2) цитоплазмы или 3) пузырчатка. 1) внеклеточной журналисты являются полярные Трейсеры (например, декстраны, sulforhodamine B (SRB), Люцифер жёлтый, pyranine), которые могут быть введены через внеклеточных среды4. Использование полярного Трейсеры позволяет для расследования фьюжн поры в популяции клеток и захватывает различные межклеточных структур, таких как кровеносные сосуды. Однако они не сообщают о везикул грузов поведение. 2) цитоплазматической журналисты являются флуоресцентных зондов, в сочетании с связанный мембранами перст-белки, которые сталкиваются с цитоплазмой и участвуют в док и экзоцитоз. Примеры включают членов растворимых N– ethylmaleimide-чувствительных фактор вложений белка рецептора (SNARE) семьи, которые были успешно использованы в неврологии для изучения нейромедиатора релиз5. Такие белки имеют несколько партнеров привязки и не инсулин блок конкретных. 3) пузырчатка журналисты являются флуоресцентных зондов, сливается с везикулярного грузов белки, которые позволяют для расследования конкретных грузов везикул поведения. Белки инсулин блок конкретных грузов включают в себя инсулин и с пептида, полипептид амилоида островка, NPY среди прочих6,7. NPY присутствует только в инсулине, содержащие гранул и совместно выпустили с инсулина, что делает его отличным партнером для флуоресцентных репортер8.

Слияние различных флуоресцентных белков NPY ранее использовалась для изучения различных аспектов экзоцитоз в нейроэндокринные клетки, например требование о конкретных Синаптотагмин изоформы9,10 и как время курс релиза зависит на Цитоскелет актина и миозина II11,12. В этом исследовании, мы выбрали pHluorin как флуоресцентные репортер, который является изменение GFP, это не флуоресцентные в кислой рН внутри плотные ядра гранул но становится ярко люминесцентные под воздействием нейтральный внеклеточного pH13. Зрелые инсулина гранулы имеют кислый рН ниже 5.5. Как только Блок предохранителей с плазматической мембраны и открывается, его груз подвергается нейтральных внеклеточного pH 7,4, позволяя использовать pHluorin рН чувствительных белки как репортер7,14.

Учитывая деликатный характер pHluorin рН и селективного выражение NPY в гранулы инсулина конструкция фьюжн NPY-pHluorin может использоваться для изучить различные свойства инсулина гранул экзоцитоз. Вирусных доставки фьюжн конструкция обеспечивает высокий трансфекции эффективность и работает на основной бета-клеток и клеточных линий, а также на изолированных островков. Этот метод также может использоваться в качестве ориентира для изучения экзоцитоз в любой другой тип клеток с NPY-содержащих везикулы. Он может также сочетаться с любой трансгенные мыши модель для изучения последствий определенных условий (нокдаунов, гиперэкспрессия и т.д.) на экзоцитоз. Эта техника ранее не использовался для описания пространственных и временных моделей гранул секреции инсулина в бета клеточных популяций в человеческих островках15.

Protocol

Комитет по этике животных из университета Майами одобрил все эксперименты. 1. вирусные инфекции нетронутыми изолированных человека или мыши панкреатических островков островок культуры: подготовить островок культуры СМИ: Connaught медицинских исследовательских лабо?…

Representative Results

Весь процесс техника показано на рисунке 1. Кратко мыши или человека островков можно инфицированных аденовирус кодирования NPY-pHluorin и образы, после нескольких дней в культуре, под конфокального микроскопа. Как гранулы сливаются с плазматической мембран…

Discussion

Эта рукопись описывает технику, которая может использоваться для визуализации экзоцитоз инсулина гранул в бета-клеток в пределах нетронутыми панкреатических островков confocal микроскопии. Он использует NPY-pHluorin как флуоресцентные репортер, клонированные в аденовирус обеспечить эффекти?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Авторы благодарят Марсия Boulina от DRI изображений ядра фонда за помощь с микроскопов. Эта работа была поддержана NIH грантов 1K01DK111757-01 (JA), F31668418 (мм), R01 DK111538, R33 ES025673 и R56 DK084321 (AC).

Materials

Upright laser-scanning confocal microscope Leica Microsystems, Wetzlar, Germany TCS-SP5 includes LAS AF, the image acquisition software
Imaging chamber Warner instruments RC-26
Imaging chamber platform Warner instruments PH-1
22×40 glass coverslips Daiggerbrand G15972H
Vacuum silicone grease Sigma Z273554-1EA
Multichannel perfusion system Warner instruments VC-8
Single inline solution heater Warner instruments SH-27B
Temperature controller Warner instruments TC-324C
Peristaltic Suction pump Pharmacia P-1
35 mm Petri dish, non-tissue culture treated VWR 10861-586
CMRL Medium, no glutamine ThermoFisher 11530037
FBS, heat inactivated ThermoFisher 16140071
L-Glutamine 200mM ThermoFisher 25030081
5M NaCl solution Sigma S5150
3M KCl solution Sigma 60135
1M CaCl2 solution Sigma 21115
1M MgCl2 solution Sigma M1028
Bovine Serum Albumin Sigma A2153
1M HEPES solution Sigma H0887
Vacuum filter VWR 431098
D-Glucose Sigma G8270
Poly-D-lysine hydrobromide Sigma-aldrich P6407
Di-8-ANNEP ThermoFisher D3167
3-isobutyl-1-methylxanthine (IBMX) Sigma I5879
Forskolin Sigma F3917

References

  1. Roder, P. V., Wong, X., Hong, W., Han, W. Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J. 473 (18), 2737-2756 (2016).
  2. Rutter, G. A., Pullen, T. J., Hodson, D. J., Martinez-Sanchez, A. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 466 (2), 203-218 (2015).
  3. Rorsman, P., Renstrom, E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 46 (8), 1029-1045 (2003).
  4. Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T., Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science. 297 (5585), 1349-1352 (2002).
  5. Ramirez, D. M., Khvotchev, M., Trauterman, B., Kavalali, E. T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron. 73 (1), 121-134 (2012).
  6. Michael, D. J., Xiong, W., Geng, X., Drain, P., Chow, R. H. Human insulin vesicle dynamics during pulsatile secretion. Diabetes. 56 (5), 1277-1288 (2007).
  7. Ohara-Imaizumi, M., et al. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Biochem J. 363 (Pt 1), 73-80 (2002).
  8. Whim, M. D. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters. PLoS One. 6 (4), e19478 (2011).
  9. Tsuboi, T., Rutter, G. A. Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol. 13 (7), 563-567 (2003).
  10. Zhu, D., et al. Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. Biochem Biophys Res Commun. 361 (4), 922-927 (2007).
  11. Aoki, R., et al. Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem J. 429 (3), 497-504 (2010).
  12. Felmy, F. Modulation of cargo release from dense core granules by size and actin network. Traffic. 8 (8), 983-997 (2007).
  13. Miesenbock, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  14. Gandasi, N. R., et al. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS One. 10 (6), e0127801 (2015).
  15. Almaca, J., et al. Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia. 58 (12), 2810-2818 (2015).
  16. Do, O. H., Low, J. T., Thorn, P. Lepr(db) mouse model of type 2 diabetes: pancreatic islet isolation and live-cell 2-photon imaging of intact islets. J Vis Exp. (99), e52632 (2015).
  17. Hanna, S. T., et al. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells. Pflugers Arch. 457 (6), 1343-1350 (2009).
  18. Carter, J. D., Dula, S. B., Corbin, K. L., Wu, R., Nunemaker, C. S. A practical guide to rodent islet isolation and assessment. Biol Proced Online. 11, 3-31 (2009).
  19. Weber, M., et al. Adenoviral transfection of isolated pancreatic islets: a study of programmed cell death (apoptosis) and islet function. J Surg Res. 69 (1), 23-32 (1997).
  20. Michael, D. J., et al. Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J. 87 (6), L03-L05 (2004).
  21. Serre-Beinier, V., et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet. 18 (3), 428-439 (2009).
  22. Rutter, G. A., Hodson, D. J. Beta cell connectivity in pancreatic islets: a type 2 diabetes target?. Cell Mol Life Sci. 72 (3), 453-467 (2015).
  23. Shen, Y., Rosendale, M., Campbell, R. E., Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J Cell Biol. 207 (3), 419-432 (2014).
  24. Speier, S., et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med. 14 (5), 574-578 (2008).
  25. Low, J. T., et al. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia. 57 (8), 1655-1663 (2014).
check_url/56089?article_type=t

Play Video

Cite This Article
Makhmutova, M., Liang, T., Gaisano, H., Caicedo, A., Almaça, J. Confocal Imaging of Neuropeptide Y-pHluorin: A Technique to Visualize Insulin Granule Exocytosis in Intact Murine and Human Islets. J. Vis. Exp. (127), e56089, doi:10.3791/56089 (2017).

View Video