Summary

透射电镜下体的样品制备与成像

Published: January 04, 2018
doi:

Summary

本协议描述了传输电子显微镜所需的各种技术, 包括阴性染色, 超薄切片的详细结构, 和免疫金标签, 以确定特定的蛋白质在体的位置。

Abstract

体是一种由体液分泌的纳米细胞胞外囊, 它能代表分泌它们的细胞的特征。分泌囊泡的含量和形态反映细胞的行为或生理状态, 例如细胞生长、迁移、分裂和死亡。体的角色可能高度依赖于大小, 体的大小从30到 300 nm 不等。最广泛使用的方法外切成像是阴性染色, 而其他结果是基于低温透射电镜, 扫描电镜, 和原子力显微镜。典型的外切的形态通过阴性染色评估是一个杯子形状, 但进一步细节还不清楚。通过结构研究的外切良好在医学和药学领域是必要的。因此, 功能相关的形态学应该通过电子显微镜技术来验证, 例如在外切的详细结构中标注特定的蛋白质。对体的结构、超薄切片图像和负染色图像进行了对比观察。在本协议中, 我们建议传输电子显微镜的成像体包括阴性染色, 全贴剂免疫染色, 块准备, 薄切片, 免疫金标签。

Introduction

胞外囊泡 (EVs) 是由细胞分泌的脂质双层囊泡, 其大小范围介于30和 300 nm 之间。EVs 是第一次报告在 1978年, 与证据从囊性霍奇金病患者的水泡1。据报道, 这些小泡的大小是40到120纳米。据报道, 在 1980年, EVs 参与了凝血系统和血栓形成, 在癌症患者的血管内产生了血块2。30年后, EVs 被报道是促进肿瘤侵袭、免疫逃逸和血管生成的重要因素3。此外, 在炎症、免疫紊乱、神经系统疾病和癌症等领域的细胞相互作用中, EVs 的功能已被研究为调节因子4。由于 EVs 包含特定的生物分子, 如蛋白质, mRNA, 和 rna5, 它们在诊断和治疗方面的潜在应用已被分析6,7。EVs 是一个由子群组成的类别, 包括体、prostasomes、oncosomes、dexosomes、微粒、promininosomes、argosomes 和外切样泡, 这取决于它们的细胞来源和生物学功能3。此外, 根据它们的生物, 这些 EVs 可分为微 (棚微、100-1000 nm) 和体 (30-300 nm)8,9。其中, 外切被报告为免疫应答的细胞通信器10、癌症1112和传染性疾病13

对体作为早期诊断的生物标记物的兴趣正在迅速增加, 体的纯化和鉴定必须伴有分子成像技术。不同的大小和形态的体, 根据它们的起源和功能14, 可以区分高分辨率的显微镜技术, 如电子显微镜。大多数体是由负染色透射电镜 (TEM)15,16,17, 这些结果是通过 immunolabeling 的一个特定的蛋白在整个芒泡的确认18. 有几个研究小组通过扫描电子显微镜、原子力显微镜、1920、低温-TEM2122来报告该结构。然而, 虽然这些技术是有用的研究外切结构, 他们是不足够的观察位置的特定蛋白质位于外切。因此, 我们介绍了一个协议的成像体与特定的蛋白质的标签。我们采用了块制备, 超薄切片和免疫, 以确定蛋白质的详细位置在外切。这是与阴性染色和整个芒免疫, 这是传统用于表征的外切。

Protocol

1. 外切块的制备、切片、染色和成像 将 HCT116 细胞培养上清液中的体, 在 10万 x g 为 1.5 h23进行离心。去除培养上清液, 在1° c 的 0.1 M 钠甲溶液 (pH 7.0) 中, 用1毫升2.5% 戊二醛仔细修复纯化的外切颗粒, 4 小时。对0.1 米甲钠, 溶解4.28 克胂酸在160毫升蒸馏水 (DW)。将 pH 值调整到7.4 与0.1 米 HCl, 然后用蒸馏水构成200毫升。 在室温下用1毫升的0.1 米甲缓冲液去除固定剂并冲?…

Representative Results

目前, 体被分为大小和形状类别的透射电子显微镜。图 2显示了负染色外切和免疫标签外切在整个安装状态。图 3显示了切片后的分段外切和免疫标记体。免疫金染色使用特异蛋白抗体, 用于积极识别外切和分类的蛋白质类型的外切。本协议采用全贴免疫和免疫塑料分段外切。 <img alt=…

Discussion

本文提出了一个协议, 以观察详细的外切的结构和标签的具体蛋白质。阴性染色被认为是外切成像17的最佳方法。这种传统的技术已经显示体的杯状结构。然而, 这个杯子形状是一种形式的人造制品, 可能发生由于干燥过程。低温透射电镜结果表明, 体在水溶液中具有完美的球形结构25,26。低温透射电镜技术是检测天然结构的一种非常有?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了生物和 #38 的支持; 国家研究基金会 (NRF) 和 #38 的医疗技术发展方案; 由韩国政府资助 (MSIP 和 #38; 保健) (No. 2016M3A9B6904244)。我们还感谢医学 Bioconvergence 研究中心的成员外切纯化。

Materials

Glutaraldehyde EMS 16200
Sodium cacodylate  EMS 12300
Osmium tetroxide 1 g crystal EMS 19100 Use only in fume hood
acetone JUNSEI 1B2031
Spurr medium TED PELLA 18108
Ultra-microtome Leica UCT
Uranyl acetate EMS 22400 Hazardous chemical
Lead citrate EMS 17900
Transmission Electron Microscopy Hitachi H7600
nickel grid EMS G200-Ni
Copper grid EMS G200-Cu
glycine SIGMA 022K5404
Phosphate buffer saline SIGMA P4417
Bovine serum albumin Aurion 25557
1st Antibody purification in manually 
Purified anti-human CD274 (B7-H1, PD-L1) Antibody BioLegend 329710 Whole mount Immumogold
Purified Mouse IgG2b, κ Isotype Ctrl BioLegend 401202 Whole mount Immumogold (Control)
2nd Anti-mouse igG conjugated 9-11 nm gold particle sigma G7652
silver paint CANS CTP100
aluminum stub EMS 75622
FIB-SEM Zeiss AURIGA
Transmission Electron Microscopy JEOL JEM2200FS
Glow discharger JEOL JFC1100E
Carbon grid EMS 121119
Paraformaldehyde EMS 19210
Formvar carbon coated Copper Grid (200 meh) EMS FCF200-CU
Formvar carbon coated  Nickel Grid (200 mesh) EMS FCF200-NI

References

  1. Friend, C., et al. Observations on cell lines derived from a patient with Hodgkin’s disease. Cancer Res. 38 (8), 2581-2591 (1978).
  2. Dvorak, H. F., et al. Tumor shedding and coagulation. Science. 212 (4497), 923-924 (1981).
  3. Zaborowski, M. P., Balaj, L., Breakefield, X. O., Lai, C. P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 65 (8), 783-797 (2015).
  4. Yanez-Mo, M., et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4, 27066 (2015).
  5. Wu, Y., Deng, W., Klinke, D. J. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 140 (19), 6631-6642 (2015).
  6. Gyorgy, B., et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 68 (16), 2667-2688 (2011).
  7. Barile, L., Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther. , (2017).
  8. Vlassov, A. V., Magdaleno, S., Setterquist, R., Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 1820 (7), 940-948 (2012).
  9. Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., Mittelbrunn, M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 28, 3-13 (2014).
  10. Thery, C., Ostrowski, M., Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9 (8), 581-593 (2009).
  11. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78 (9), 838-848 (2010).
  12. Zaharie, F., et al. Exosome-Carried microRNA-375 Inhibits Cell Progression and Dissemination via Bcl-2 Blocking in Colon Cancer. J Gastrointestin Liver Dis. 24 (4), 435-443 (2015).
  13. Fuhrmann, G., Neuer, A. L., Herrmann, I. K. Extracellular vesicles – a promising avenue for the detection and treatment of infectious diseases?. Eur J Pharm Biopharm. , (2017).
  14. Lotvall, J., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 3, 26913 (2014).
  15. Liu, X., Wang, H. W. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. J Vis Exp. (49), (2011).
  16. Wang, J., Yao, Y., Wu, J., Li, G. Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol. 8 (6), 6135-6142 (2015).
  17. Thery, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. , 22 (2006).
  18. Mazzeo, C., et al. Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J Allergy Clin Immunol. 135 (6), 1603-1613 (2015).
  19. Sokolova, V., et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 87 (1), 146-150 (2011).
  20. Sharma, S., et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 4 (4), 1921-1926 (2010).
  21. Raposo, G., Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 200 (4), 373-383 (2013).
  22. Bosch, S., et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 6, 36162 (2016).
  23. Lobb, R. J., et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 4, 27031 (2015).
  24. Kim, S. B., et al. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol. , (2017).
  25. Conde-Vancells, J., et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 7 (12), 5157-5166 (2008).
  26. Kadiu, I., Narayanasamy, P., Dash, P. K., Zhang, W., Gendelman, H. E. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol. 189 (2), 744-754 (2012).
  27. Gong, J., Korner, R., Gaitanos, L., Klein, R. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol. 214 (1), 35-44 (2016).
  28. Melo, S. A., et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 523 (7559), 177-182 (2015).
  29. Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9 (6), 654-659 (2007).
  30. van Niel, G., Heyman, M. The epithelial cell cytoskeleton and intracellular trafficking. II. Intestinal epithelial cell exosomes: perspectives on their structure and function. Am J Physiol Gastrointest Liver Physiol. 283 (2), G251-G255 (2002).
check_url/56482?article_type=t

Play Video

Cite This Article
Jung, M. K., Mun, J. Y. Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. J. Vis. Exp. (131), e56482, doi:10.3791/56482 (2018).

View Video