Summary

Emodinamico invasivo caratterizzazione della sindrome Portal-ipertesi in ratti cirrotici

Published: August 01, 2018
doi:

Summary

Qui descriviamo un protocollo dettagliato per misurazioni invasive dei parametri emodinamici, compreso pressione portale, flusso sanguigno intestinale ed emodinamica sistemica al fine di caratterizzare la sindrome iperteso in ratti.

Abstract

Si tratta di un protocollo dettagliato che descrive invasive misure emodinamiche in ratti cirrotici per la caratterizzazione della sindrome ipertensiva portale. Ipertensione portale (PHT) a causa di cirrosi è responsabile per le complicanze più gravi in pazienti con l’affezione epatica. Il quadro completo della sindrome ipertensiva portale è caratterizzato da aumento della pressione portale (PP) dovuto l’aumento della resistenza vascolare intraepatico (IHVR), circolazione hyperdynamic, flusso sanguigno intestinale aumentata. Vasodilatazione arteriosa splancnica progressiva e arterioso aumentato con elevata frequenza cardiaca (HR), ma bassa pressione arteriosa caratterizza la sindrome di iperteso.

Nuove terapie sono in fase di sviluppo che mirano a diminuire PP da entrambi IHVR targeting o aumentato flusso sanguigno intestinale — ma possono verificarsi effetti collaterali sull’emodinamica sistemica. Così, una dettagliata caratterizzazione del portale venosa, splancnica e parametri emodinamici sistemici, compreso la misura di PP, flusso sanguigno venoso portale (PVBF), flusso sanguigno arterioso mesenterico, pressione arteriosa media (MAP) e HR è necessaria per preclinici valutazione dell’efficacia di nuovi trattamenti per PHT. Il nostro video articolo fornisce al lettore con un protocollo strutturato per l’esecuzione di misurazioni emodinamiche invasive in ratti cirrotici. In particolare, descriviamo la cateterizzazione dell’arteria femorale e vena portale tramite una vena ileocolic e la misurazione del portale venosa e flusso sanguigno intestinale tramite sonde di flusso di Doppler-ultrasuono perivascolare. Sono mostrati risultati rappresentativi dei modelli differenti del ratto di PHT.

Introduction

PHT è definito come patologico aumento della pressione sanguigna nel sistema venoso portale che può causare le complicazioni severe in pazienti con cirrosi come spurgo variceal e ascite1. Pre-epatico (ad es., trombosi della vena portale) e post-epatica (ad es., sindrome di Budd-Chiari), mentre PHT sono rare, intraepatica PHT a causa di cirrosi epatica rappresenta la causa più comune di PHT2.

Nella cirrosi epatica, PP principalmente è aumentato in conseguenza di elevati IHVR3. Nelle fasi avanzate, PHT è aggravato dal PVBF aumentato a causa di una maggiore gittata cardiaca e diminuzione della resistenza vascolare sistemica e splancnica — definire la sindrome ipertensiva portale4. Legge di Ohm (ΔP = Q * R) implica che il flusso di sangue e IHVR sono proporzionali alla PP5. In pazienti, misura diretta della PP è rischioso e non ordinariamente svolte; invece, il gradiente di pressione venosa epatica (HVPG) viene utilizzato come una misura indiretta di PP6,7. L’HVPG è calcolata sottraendo la pressione venosa epatica libera (FHVP) dalla pressione venosa epatica incastrata (WHVP), che sono misurati utilizzando un catetere a palloncino inserito in una vena epatica8. L’HVPG fisiologico varia tra 1-5 mmHg, mentre un HVPG ≥ 10 mmHg definisce ipertensione portale clinicamente significativa (CSPH) e indica il maggior rischio di complicanze correlate a PHT, quali spurgo variceal, l’ascite e l’encefalopatia epatica9 . Anche se PP (cioè, HVPG) è il parametro più rilevante per la severità PHT, informazioni su altri componenti di PHT, compreso la gravità della circolazione di hyperdynamic (HR, MAP), il flusso sanguigno arterioso splancnico/mesenterica e IHVR, sono fondamentali per ottenere una comprensione globale del meccanismo sottostante distinto di PHT.

Così, in contrasto con le misure indirette di PP in esseri umani, la metodologia introdotta per ratti offre il vantaggio di una misura diretta di PP e permette la registrazione di ulteriori parametri emodinamici che caratterizzano la sindrome ipertensiva portale. Inoltre, la misura diretta di PP è un’eccellente lettura integrativa della quantità di fibrosi del fegato (un determinante importante del IHVR) e supera determinati limiti di quantificazione di fibrosi correlati a errori di campionamento del tessuto del fegato.

I più comunemente usati modelli del roditore di PHT cirrotici includono la legatura chirurgica dei dotti biliari (BDL), danno epatico indotto da tossina (cioè, di tetracloruro di carbonio, thioacetamide o amministrazione dimetilnitrosammina) e fegato metabolico indotta da dieta modelli di malattia. Prehepatic PHT (non cirrotici) può essere indotta da parziale della vena portale legatura (PPVL)10.

Piccoli roditori sono adatti per il metodo proposto, tra cui topi, criceti, ratti o conigli e sono associati con relativamente bassi costi di manutenzione. Nonostante che tutti le valutazioni emodinamiche sono possibile eseguire nei topi, migliore precisione e riproducibilità dei risultati sono visti con ratti o più grandi roditori dovuto l’ovvio vantaggio di dimensione animale. Inoltre, specifici micro-strumenti e dispositivi sono necessari per ottenere i parametri emodinamici simili nei topi. Infine, i ratti sono più robusti con mortalità e morbilità associata inferiore e così, i tassi di abbandono sono probabilmente più bassi nei ratti che nei topi.

La metodologia presentata è particolarmente adatta per la valutazione dei trattamenti specifici dell’affezione epatica (cioè, farmaci anti-infiammatori o anti-fibrotici) o romanzo farmacologico si avvicina quel tono vascolare influenza e/o biologia endoteliale; e così, i parametri emodinamici del probabile effetto in PHT.

Protocol

Tutti i metodi descritti qui sono stati approvati dal comitato etico dell’Università di medicina di Vienna e il Ministero austriaco della scienza, ricerca ed economia (BMWFW). Le procedure devono essere eseguite in condizioni asettiche in una sala operatoria o simili pulire l’area di lavoro poiché le misure emodinamiche rappresentano gli interventi chirurgici. Generalmente, lavorando in condizioni di sterilità è raccomandato. Quando si utilizza un’anestesia per inalazione, considerare un’adeguata ventilazione della s…

Representative Results

A seconda del modello animale e la severità dell’affezione epatica, il grado di PHT e la severità della sindrome ipertensiva portale è diverso (Figura 7). Il modello BDL provoca cirrosi biliare dovuto colestasi. Di conseguenza, PP aumenta nel tempo e un hyperdynamic circolazione si sviluppa, come visto da un aumento di HR e diminuzione della mappa. Negli animali cirrotici, SMABF, PVBF e IHVR anch…

Discussion

PP è il parametro principale di risultato per la valutazione della sindrome iperteso e riflette la gravità della cirrosi sottostante. Sia la deposizione di matrice (cioè, fibrosi) e vasocostrizione sinusoidale (causa di aumentata espressione epatica di vasocostrittori e risposta ai vasodilatatori in diminuzione) causare aumento IHVR. L’importanza di PP e il suo impatto sull’affezione epatica cronica è stato dimostrato in più preclinici11,12,</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ringraziamo i veterinari, infermieri e detentori di animali presso il centro di ricerca biomedica per il continuo supporto durante i nostri progetti di ricerca. Gli autori riconoscono l’importante contributo di tutti gli ospiti del presente protocollo. Alcune delle ricerche è stato finanziato dal “Young Science Award” della società austriaca di gastroenterologia ed epatologia (ÖGGH) per PS e il premio”Skoda” della società austriaca di medicina interna a TR.

Materials

Instruments
LabChart 7 Pro software ADInstruments, Colorado Springs, CO, USA  - Software
ML870 PowerLab 8/30 ADInstruments, Colorado Springs, CO, USA  - Electronic multichannel recorder
MLT0380/D ADInstruments, Colorado Springs, CO, USA  - Pressure transducer (x2: for Portal Pressure and Arterial Pressure)
ML112 Quad Bridge Amplifier ADInstruments, Colorado Springs, CO, USA  - Bridge amplifier
TS420 Transonic Systems Inc., Ithaca, NY, USA  - Flowmeter module
Biological Research Apparatus 7025 UGO BASILE S.R.L., Comerio, Italy  - Ventilator
Vapor 2000 Dräger Medical AG & Co. KG, Lübeck, Germany  - Isofluran Vaporizer
Perivascular probes (rat) for Transonic systems (Superior Mesenteric Artery) Transonic Systems Inc., Ithaca, NY, USA #MA1PRB Ultrasonic flow probe (1mm)
Perivascular probes (rat) for Transonic systems (Portal Vein) Transonic Systems Inc., Ithaca, NY, USA #MA2PSB Ultrasonic flow probe (2mm)
1st for intubation & 2nd for clean skin incisions  -  - Mayo scissor [x2]
Metzenbaum scissor  -  -  -
Cuticle scissor  -  -  -
e.g. Adson Brown tissue forceps  -  - Tissue Forceps
High precision 45° angle broad point forceps [x2]  -  -  -
Hemostat [x4]  -  -  -
e.g. Mikulicz peritoneal clamp  -  - Curved clamp
e.g. Dieffenbach clamp  -  - Micro clamp
e.g. micro spatula with flat ends, width 4 mm,  -  - Micro metal spatula
for transbuccal suture at intubation  -  - Needle holder
Scalpel grip  -  -  -
selfmade  -  - Intubation desk
blut, flexible and with a suitable diameter for arterial cannula and venflow  -  - Blunt steel wire
modified arterial line 20G with Flowstich Becton Dickinson, Farady Road, Swindon, UK #682245 Arterial line
Heating pad  -  -  -
Rectal temerature probe  -  -  -
Saline heater  -  -  -
Laryngoscope (specific for animal size, e.g. rat)  -  -  -
Inductionbox for inhalation anesthesia  -  -  -
Scale (able to measure mg)  -  -  -
Hair clipper  -  -  -
Name Company Catalog Number Comments
Consumables
e.g. modified BD Venflon Pro Safety 14GA Becton Dickinson Infusion Therapy, AB, SE251 06 Helsingborg, Sweden #393230 Peripheral venous catheter (14G)
Fine-Bore Polyethylene Tubing, ID 0.58mm, OD 0.96mm, Portex, Smiths Medical International Ltd., Kent, UK #800/100/200 Catheter tube (PE-50)
e.g. Omnifix-F Solo B. Braun Melsungen AG, Melsungen, Germany #9161406V Syringe 1mL
e.g. Injekt Solo B. Braun Melsungen AG, Melsungen, Germany #4606051V Syringe 5mL
e.g. Injekt Solo B. Braun Melsungen AG, Melsungen, Germany #4606205V Syringe 20mL
e.g. BD Microlance 3, 18G – 1 1/2" Becton Dickinson S.A., Fraga, Spain #304622 Cannula (18G)
e.g. BD Microlance 3, 23G – 1" Becton Dickinson S.A., Fraga, Spain #300800 Cannula (23G)
e.g. BD Microlance 3, 30G – 1/2" Becton Dickinson S.A., Fraga, Spain #304000 Cannula (30G)
e.g. Leukoplast S BSN medical GmbH, Hamburg,  Germany #47619-00 Adhesive tape
e.g. Gazin RK Mullkompressen (18x8cm) Lohmann & Rauscher, Vienna, Austria #10972 Gauze compress (small)
e.g. Gazin RK Mullkompressen (5x5cm) Lohmann & Rauscher, Vienna, Austria #10961 Gauze compress (big)
Silk Braided black, USP 4/0, EP 1.5 SMI AG, St. Vith, Belgium #2021-04 Suture (Silk 4/0, EP 1.5)
e.g. Mersilk, 2-0 (3 Ph. Eur.), PS-1 Prime Johnson & Johnson Medical GmbH – Ethicon Deutschland, Germany #EH7552 Transbuccal suture
e.g. Cottonbuds (2.2mm, 15cm) Paul Hartmann AG, Heidenheim, Germany #967936 Cotton buds
e.g. Vue Ultrasoundgel Optimum Medical Limited, UK #1157 Ultrasound gel
e.g. Glubran 2 Gem srl, Viareggio, Italy #G-NB2-50 Tissue glue
e.g. Surgical scalpell knife Nr. 10 – carbon steel Swann-Morton, England, B.S. #202 Scalpel Knife
Heparin, 5000 i.E./mL (Natriumheparin) Medicamentum Pharma GmbH, Allerheiligen im Mürztal, Austria  - Heparin
Florane Aesica Queenborough Ltd., Queenborough, UK  - Isoflurane
OeloVital (5g) Fresenius Kabi Austira Gmbh, Graz, Austria  - Eye gel
Ketasol aniMedica GmbH, Senden-Bösensell, Germany  - Ketamine
Rompun Bayer Austria Ges.m.b.H., Vienna, Austria  - Xylazine
Xylocain 10% Pumpspray AstraZeneca Österreich GmbH, Vienna, Austria  - Lidocaine pump spray
Dipidolor Jansen-Cilag Pharma GmbH, Vienna, Austria  - Piritramide
NaCl 0.9% Fresenius, 1L Fresenius Kabi Austira GmbH, Graz, Austria #13LIP132 Physiological saline solution

References

  1. Ripoll, C., et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 133 (2), 481-488 (2007).
  2. Bosch, J., Groszmann, R. J., Shah, V. H. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments. J Hepatol. 62, S121-S130 (2015).
  3. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D. C., Roudot-Thoraval, F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol. 58 (3), 593-608 (2013).
  4. Colle, I., Geerts, A. M., Van Steenkiste, C., Van Vlierberghe, H. Hemodynamic Changes in Splanchnic Blood Vessels in Portal Hypertension. Advances in Integrative Anatomy and Evolutionary Biology. 291 (6), 699-713 (2008).
  5. Laleman, W., Van Landeghem, L., Wilmer, A., Fevery, J., Nevens, F. Portal hypertension: from pathophysiology to clinical practice. Liver International. 25 (6), 1079-1090 (2005).
  6. Franchis, R. d. . Updating Consensus in Portal Hypertension: Report of the Baveno III Consensus Workshop on definitions, methodology and therapeutic strategies in portal hypertension. Journal of Hepatology. 33 (5), 846-852 (2000).
  7. Zardi, E. M., Di Matteo, F. M., Pacella, C. M., Sanyal, A. J. Invasive and non-invasive techniques for detecting portal hypertension and predicting variceral bleeding in cirrhosis: a review. Annals of medicine. 46 (1), 8-17 (2014).
  8. Kumar, A., Sharma, P., Sarin, S. K. Hepatic venous pressure gradient measurement: time to learn. Indian J Gastroenterol. 27 (2), 74-80 (2008).
  9. Tsochatzis, E. A., Bosch, J., Burroughs, A. K. Liver cirrhosis. Lancet. 383 (9930), 1749-1761 (2014).
  10. Abraldes, J. G., Pasarín, M., García-Pagán, J. C. Animal models of portal hypertension. World Journal of Gastroenterology : WJG. 12 (41), 6577-6584 (2006).
  11. Reiberger, T., et al. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. Journal of Hepatology. 51 (5), 865-873 (2009).
  12. Schwabl, P., et al. Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. Journal of Hepatology. 60 (6), 1135-1142 (2014).
  13. Reiberger, T., et al. Nebivolol treatment increases splanchnic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. Liver International. 33 (4), 561-568 (2013).
  14. Schwabl, P., et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. Journal of Hepatology. 66 (4), 724-733 (2017).
  15. Mandorfer, M., et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol. 65 (4), 692-699 (2016).
  16. Schwabl, P., et al. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease. Aliment Pharmacol Ther. 45 (1), 139-149 (2017).
  17. Reiberger, T., Mandorfer, M. Beta adrenergic blockade and decompensated cirrhosis. Journal of Hepatology. 66 (4), 849-859 (2017).
  18. Reiberger, T., et al. Carvedilol for primary prophylaxis of variceal bleeding in cirrhotic patients with haemodynamic non-response to propranolol. Gut. 62 (11), 1634-1641 (2013).
  19. Reiberger, T., et al. Austrian consensus guidelines on the management and treatment of portal hypertension (Billroth III). Wiener klinische Wochenschrift. 129 (3), 135-158 (2017).
  20. de Franchis, R. Expanding consensus in portal hypertension. Journal of Hepatology. 63 (3), 743-752 (2015).
  21. Pinter, M., et al. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma – a pilot study. Alimentary Pharmacology & Therapeutics. 35 (1), 83-91 (2012).
  22. Schwabl, P., Laleman, W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf). 5 (2), 90-103 (2017).
  23. Klein, S., Schierwagen, R., Uschner, F., Trebicka, J. . Mouse and Rat Models of Induction of Hepatic Fibrosis and Assessment of Portal Hypertension. , (2017).
  24. Russell, W. M. S., Burch, R. L. . The Principles of Humane Experimental Technique. , (1959).
  25. Langhans, W., Myrtha, A., Riediger, T., Lutz, T. A. . Routine animal use procedures. , (2016).
  26. Animal Care and Use Program. . Rat and Mouse anesthesia and analgesia: Formulary and General Drug Information. , (2016).
  27. Davis, J. A. . Current Protocols in Neuroscience. , (2001).
  28. Albrecht, M., Henke, J., Tacke, S., Markert, M., Guth, B. Effects of isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl on physiological variables continuously measured by telemetry in Wistar rats. BMC Veterinary Research. 10 (1), 198 (2014).
  29. Redfors, B., Shao, Y., Omerovic, E. Influence of anesthetic agent, depth of anesthesia and body temperature on cardiovascular functional parameters in the rat. Laboratory Animals. 48 (1), 6-14 (2014).
  30. Becker, K., et al. . Statement on anesthesia methodologies: Recommondations on anaesthesia methodologies for animal experimentation in rodents and rabbits. , (2016).

Play Video

Cite This Article
Königshofer, P., Brusilovskaya, K., Schwabl, P., Podesser, B. K., Trauner, M., Reiberger, T. Invasive Hemodynamic Characterization of the Portal-hypertensive Syndrome in Cirrhotic Rats. J. Vis. Exp. (138), e57261, doi:10.3791/57261 (2018).

View Video