Summary

マッピング代謝: 監視組織で直接乳酸脱水素酵素活性

Published: June 21, 2018
doi:

Summary

Nicotinatmide アデニン酸 (NAD(P)H) + H + 組織サンプルで直接生成酵素の酵素活性の分布をマッピングするためのプロトコルについて述べます。

Abstract

空間と時間における酵素活性のマッピングは、正常組織と病気での細胞行動の分子基盤を理解することにとって重要です。その場で代謝活性アッセイは、組織内の代謝活動の空間分布に関する情報を提供できます。ここで組織サンプルに直接酵素乳酸脱水素酵素の活動を監視するための詳しいプロトコルいたします。乳酸脱水素酵素は消費グルコースが好気性または嫌気性解糖系によるエネルギーに変換するかどうかの決定が重要です。液乳酸および NAD は、凍結するティッシュ セクションを提供しています。高乳酸脱水素酵素活性と細胞はニコチン酸アミドアデニンジヌクレオチド (NAD) NADH と検出することができるプロトンの減少に基づいて提供される同時変換中、提供乳酸をピルビン酸に変換されます。nitrotetrazolium 青青い沈殿物として可視化した塩。マウス皮膚における乳酸脱水素酵素の活動を監視するための詳しいプロトコルについて述べる。このプロトコルを適用すると、乳酸脱水素酵素活性が皮膚内で静止の毛包幹細胞で高いことがわかった。マウス胚性線維芽細胞より培養胚性幹細胞の高い染色プロトコルを培養マウス胚性幹細胞に適用することを明らかにしました。新鮮単離マウス大動脈の解析では、大動脈に垂直平滑筋細胞における染色を明らかにしました。提供手法を使用して、新鮮なまたは冷凍の組織で陽子を生成する酵素の活性を空間的にマッピングすることができます。

Introduction

酵素が高または低活性を持つ、組織内の場所を理解する理解の開発および生理学のため不可欠です。謄本又はタンパク質レベルは、酵素活性の代理として使われます。このような研究は有益であることができます中、に、酵素の活動、翻訳後修飾、タンパク質複合体や酵素の細胞内局在性の存在などを決定するための重要なことができる情報は提供しません。酵素活性は直接計測するときにしばしばもはや組織内の高または低の活動と混合物または細胞の空間的分布内で個々 のセルについての情報が含まれて均質化タンパク質溶解液で監視されます。

ここで組織サンプル中の酵素活性の分布をマッピングするための詳しいプロトコルいたします。方法論は、テトラゾリウム塩を凍結するティッシュ1酸化酵素、還元酵素、脱水素酵素の活性のローカライズに使用できることを示す以前の研究に基づいています。これらのメソッドは、テトラゾリウム塩2,3に陽子が転送されるときに水不溶性ホルマザンが形成されます。グルコース-6-リン酸脱水素酵素は、NADPH と、陽子を生成し、テトラゾリウム アクティビティが検出されました。グルコース-6-リン酸脱水素酵素は、欧州ヒラメ肝45の 2 型肺胞細胞と5腎臓のネフロンに監視されています。テトラゾリウム塩は、凍結するティッシュ6の細胞の活動を監視する使用されています。同様のアプローチは、隣接するスライド7で同じ組織の複数の脱水素酵素の活動を監視する最近使用されました。

乳酸脱水素酵素活性 (図 1) の空間分布を監視するテトラゾリウム塩を利用する方法をご紹介します。乳酸脱水素酵素、乳酸を解糖系と逆の反応で生成されたピルビン酸に変換できます。乳酸脱水素酵素活性はその結果ピルビン酸の乳酸とその分泌対トリカルボン酸入学の決定が重要であります。血液中の乳酸濃度は、それことを知らせた病気やけがが損傷した細胞、酵素がリリースされているので癌8,9,10, を含む病気の範囲の診断に使われます。

4 つの乳酸脱水素酵素の遺伝子がある: 発現、LDHB、LDHC、LDHD11。発現と LDHB は、早期発現遺伝子12の重複から生じていると考えられています。LDH は 4 量体として活躍、発現と LDHB は、homotetramers と heterotetramers の相互を形成できます。発現は、乳酸、高い親和性を持っていると優先的に乳酸をピルビン酸13に変換する LDHB が報告される間、ピルビン酸、高い親和性を有するとされています。発現プロモーターには、HIF1α、cMYC FOXM1 のトランスクリプション要因11結合部位が含まれています。さらに、ように多く他解糖系酵素14,15LDH が翻訳後修飾によって変更できます。線維芽細胞増殖因子受容体 1 は Y10、4 量体形成を促進する、または NADH 基板結合16を促進する Y83 発現に対することができます。発現にアセチル化17することができます。これらの理由から LDH タンパク質レベルだけでなく、同様の酵素の活性を監視する必要の LDH 活性を完全に理解します。

ここでは提示方式に加え乳酸脱水素酵素の活動を監視する他のアプローチは使用されました。乳酸脱水素酵素活性は、均質化蛋白ライセートの吸収スペクトルの測定監視できます。NADH の生成、乳酸、ピルビン酸に変換されます測定可能 340 吸光度に基づいて nm, ピルビン酸は乳酸18に変換されます NADH の消失を監視できます。乳酸脱水素酵素活性は、磁気共鳴画像 (MRI) に監視されています。13C ピルビン酸を投与することができの比としてピルビン酸から乳酸の変換を監視できる [1-13] 乳酸/[1-13C] ピルビン酸。比率を上昇 [1-13C] 乳酸/[1-13] ピルビン酸は、癌組織19で観察されています。MRI ベースのアプローチは、通常の乳酸脱水素酵素活性と疾患組織に関する情報を提供できますが、方法論は特定の細胞の活動レベルを決定するために必要な解像度を持っていません。ここで提供されている方法論は、組織の地域とも単一細胞における乳酸脱水素酵素活動の情報を提供できます。

その場で活性測定法を使用して、乳酸脱水素酵素の活性が高い20マウス皮膚の毛包幹細胞のことがわかった。また培養胚性幹細胞の乳酸脱水素酵素の活動を監視し、活動は幹細胞に送り装置の層よりも高いメソッドを使いました。最後に、新鮮なマウス大動脈における乳酸脱水素酵素の活動を監視し、平滑筋細胞内染色を観察しました。我々 はここで冷凍マウス皮膚における乳酸脱水素酵素の活動を監視するための詳しいプロトコルについて説明します。

Protocol

記載されているすべての実験は、カリフォルニア大学ロサンゼルス校で動物ケア委員会によって承認されました。 1. 冷凍マウス皮膚のスライドを生成します。 機関のポリシーに従ってマウスを安楽死させます。注: 防護服の制度のポリシーに従ってください。動物を含むすべてのプロトコルは、機関動物ケア委員会によって承認される必要があります。 <l…

Representative Results

我々 は以前マウス皮膚20の活性測定法の場での結果を報告しました。図 3のように、上記の手順で説明したときの毛包の基部に毛包幹細胞の乳酸脱水素酵素活性の高いレベルが続いていたを見ました。これらの調査結果は、毛包幹細胞を皮膚の並べ替えと並べ替えられた細胞の活性測定法と幹細胞コンパートメント高乳?…

Discussion

ここで説明する方法は、乳酸脱水素酵素や他の代謝酵素生成 NADH または NADPH 依存性の異なる種類の細胞、組織内または時間の経過とともに組織のさまざまな部分の活動を監視する使用できます。乳酸脱水素酵素は幹細胞と腫瘍の生物学を理解するための重要な酵素を個々 の細胞における乳酸脱水素酵素の活動を監視する機能はこの酵素の機能に重要な洞察を提供する可能性が高い。

<p cla…

Disclosures

The authors have nothing to disclose.

Acknowledgements

HAC リタ アレン財団 (http://www.ritaallenfoundation.org) のミルトン E. カッセル学者でもあった。この作業によって賄われていた補助金拍する国立研究所の一般的な医療科学 R01 GM081686、R01 AR070245、国立の研究所一般医療科学 R01 GM0866465、イーライ ・ エディス広い再生医療センター ・幹細胞研究 (からローズの丘と Hal Gaba 賞)、WEL および HAC にジョンソン総合がんセンターからアイリス カントール女性の健康センター/カリフォルニア大学ロサンゼルス校 CTSI NIH グラント UL1TR000124、白血病リンパ腫協会の影響賞を受賞します。この出版物で報告された研究は、賞を受賞番号 P50CA092131 の下で健康の国民の協会の国立癌研究所によって支えられました。資金提供者には、研究デザイン、データ収集と分析、意思決定を発行し、または原稿の準備の役割はなかった。HAC は、Eli およびエディス広い再生医療センター ・幹細胞研究、カリフォルニア大学ロサンゼルス校の分子生物学研究所と UCLA バイオインフォマティクス部門間プログラムのメンバーです。

Materials

Surgical instruments For collecting skin from euthanized mice
Tissue-tek cryomold 25 mm x 20 mm x 5 mm Fisher Scientific NC9511236 For freezing mouse skin
Tissue-Tek O.C.T. compound Fisher Scientific NC9638938 For mounting cryomolds
Ice bucket Fisher Scientific 07-210-106
Dry Ice
Polysine Adhesion Slide Fisher Scientific 12-545-78
4% formalin Fisher Scientific 23-245-684 Dilluted in water
phosphate buffered saline, pH 7.4
vortex
Tris base Fisher Scientific 23-245-684
NAD Sigma-Aldrich N7004
Phenazine methosulfate Sigma-Aldrich P9625
Nitrotetrazolium blue chloride Sigma-Aldrich N6876
Lithium L-lactate Sigma-Aldrich L2250 Substrate
37°C incubator (or tissue culture incubator)
Braziliant! Counter stain Anatech 861 Counter stain
Mounting medium Vector Laboratories H-5000 
Cover slips for slides Fisher Scientific 12-544D
Light microscope

References

  1. Boonacker, E., Van Noorden, C. J. Enzyme cytochemical techniques for metabolic mapping in living cells, with special reference to proteolysis. J Histochem Cytochem. 49, 1473-1486 (2001).
  2. Seidler, E. The tetrazolium-formazan system: Design and histochemistry. Prog Histochem Cytochem. 24, 1-86 (1991).
  3. Van Noorden, C. J. F., Frederiks, W. M. . Enzyme Histochemistry: A Laboratory Manual of Current Methods. , (1992).
  4. Winzer, K., Van Noorden, C. J., Kohler, A. Quantitative cytochemical analysis of glucose-6-phosphate dehydrogenase activity in living isolated hepatocytes of European flounder for rapid analysis of xenobiotic effects. J Histochem Cytochem. 49, 1025-1032 (2001).
  5. Negi, D. S., Stephens, R. J. An improved method for the histochemical localization of glucose-6-phoshate dehydrogenase in animal and plant tissues. J Histochem Cytochem. 25, 149-154 (1977).
  6. Boren, J., et al. In situ localization of transketolase activity in epithelial cells of different rat tissues and subcellularly in liver parenchymal cells. J Histochem Cytochem. 54, 191-199 (2006).
  7. Miller, A., et al. Exploring metabolic configurations of single cells within complex tissue microenvironments. Cell Metab. , (2017).
  8. Shen, J., et al. Prognostic value of serum lactate dehydrogenase in renal cell carcinoma: a systematic review and meta-analysis. PLoS One. 11, e0166482 (2016).
  9. Zhang, X., et al. Prognostic significance of serum LDH in small cell lung cancer: A systematic review with meta-analysis. Cancer Biomark. 16, 415-423 (2016).
  10. Petrelli, F., et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. 54, 961-970 (2015).
  11. Valvona, C. J., Fillmore, H. L., Nunn, P. B., Pilkington, G. J. The regulation and function of lactate dehydrogenase A: Therapeutic potential in brain tumor. Brain Pathol. 26, 3-17 (2016).
  12. Markert, C. L., Shaklee, J. B., Whitt, G. S. Evolution of a gene: Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 189, 102-114 (1975).
  13. Read, J. A., Winter, V. J., Eszes, C. M., Sessions, R. B., Brady, R. L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins. 43, 175-185 (2001).
  14. Holness, M. J., Sugden, M. C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 31, 1143-1151 (2003).
  15. Yi, W., et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 337, 975-980 (2012).
  16. Fan, J., et al. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol. 31, 4938-4950 (2011).
  17. Zhao, D., et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 23, 464-476 (2013).
  18. Vanderlinde, R. E. Measurement of total lactate dehydrogenase activity. Ann Clin Lab Sci. 15, 13-31 (1985).
  19. Nelson, S. J., et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 5, 198ra108 (2013).
  20. Flores, A., et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol. , (2017).
  21. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Cryosectioning tissues. CSH Protoc. 2008, (2008).
  22. Espada, J., et al. Non-aqueous permanent mounting for immunofluorescence microscopy. Histochem Cell Biol. 123, 329-334 (2005).
  23. Hisada, R., Yagi, T. 1-Methoxy-5-methylphenazinium methyl sulfate. A photochemically stable electron mediator between NADH and various electron acceptors. J Biochem. 82, 1469-1473 (1977).
check_url/57760?article_type=t

Play Video

Cite This Article
Jelinek, D., Flores, A., Uebelhoer, M., Pasque, V., Plath, K., Iruela-Arispe, M. L., Christofk, H. R., Lowry, W. E., Coller, H. A. Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. J. Vis. Exp. (136), e57760, doi:10.3791/57760 (2018).

View Video