Summary

锥形束术中计算机断层扫描图像指南,用于微创跨体间融合

Published: August 06, 2019
doi:

Summary

本文的目的是为微创的跨体间融合提供图像指导。

Abstract

跨腰椎间质融合 (TLIF) 通常用于治疗脊柱狭窄、退行性椎间盘疾病和脊柱炎。微创手术 (MIS) 方法已应用于此技术,相关减少估计失血 (EBL)、住院时间以及感染率,同时保留传统开放式手术的结果。以前的 MIS TLIF 技术涉及大量的荧光镜检查,使患者、外科医生和手术室工作人员受到非平凡的辐射暴露,尤其是复杂的多级程序。我们提出了一种利用术中计算机断层扫描 (CT) 扫描来帮助放置脚踏螺钉的技术,然后是传统的荧光镜检查,以确认保持架放置。患者以标准方式定位,参考弧位于后部上部脊柱 (PSIS) 中,然后是术中 CT 扫描。这允许通过每侧一英寸的皮肤切口,基于图像指导放置脚踏螺钉。与在这一阶段需要大量荧光成像的传统MIS-TLIF不同,现在可以在不向患者或手术室工作人员造成任何额外辐射的情况下进行手术。完成面部切除术和椎间盘切除术后,最终TLIF保持架放置通过荧光镜检查确认。该技术有可能减少操作时间,并最大限度地减少总辐射暴露。

Introduction

TLIF 是考虑用于退行性椎间盘疾病和脊柱裂的体间融合时可用的几种选项之一。TLIF 技术最初是针对与较传统的后腰间体间融合 (PLIF) 方法相关的并发症而开发的。更具体地说,TLIF最大限度地减少了神经元素的回缩,从而降低了神经根损伤的风险以及硬膜撕裂的风险,这可能导致脑脊液持续泄漏。作为一种单边方法,TLIF技术也可以更好地保存后元素1的正常解剖结构。TLIF可以执行开放(O-TLIF)或微创(MIS-TLIF),和MIS-TLIF已被证明是一个多功能和流行的治疗腰椎退行性疾病和脊柱炎2,3,4。与O-TLIF相比,MIS-TLIF与减少失血、缩短住院时间、减少麻醉使用有关;患者报告和放射学结果测量在开放和MIS方法之间也相似,因此表明MIS-TLIF是一个同样有效但可能较少病态的程序5,6,7, 8,9,10,11.

然而,传统MIS技术的一个经常限制是严重依赖荧光镜,使病人、外科医生和手术室工作人员暴露在非平凡的辐射剂量和荧光镜检查时间之间,范围从46-147 s12。然而,最近,对术中CT制导导航的使用进行了研究,有几种不同的系统可供使用,并在文献中描述了包括O-arm/Stealth、Airo Mobile和Stryker脊柱导航系统。13,14这种类型的导航技术已被证明能够产生精确的脚踏螺钉放置,同时将外科医生的辐射风险降至最低,外科医生15、16、17、1819.在本文中,我们介绍了一种MIS-TLIF的新技术,该技术利用基于图像引导的螺杆放置,然后采用传统的荧光镜检查,然后进行保持架和杆放置。此策略有可能提高脚踏螺钉放置的速度和准确性,同时最大限度地减少对患者和手术室工作人员的辐射暴露。

Protocol

所有程序和研究活动都是经机构审查委员会批准(CHR #17-21909)进行的。 1. 术前准备 诱导患者进行一般麻醉,用胸部支撑和髋垫将患者放在杰克逊桌上。 准备和窗帘病人的背部以通常无菌的方式。 2. 外科手术 使用 #15 刀片在 PSIS 对计划 TLIF 的一侧进行小刺切口。 将活检针穿过刺切口放入硅中,以收获骨髓吸气(<strong class="xfig"…

Representative Results

50名患者在单外科医生(AC)下接受了这项技术的手术。平均年龄为53岁(29-84岁),其中30名妇女和20名男子。患者呈现以下病理学:脊柱狭窄(n=45),脊柱炎(n=29),面囊肿(n=5),退行性脊柱侧弯(n=3)和cauda儿皮综合征(n=1)。症状为42例背部和腿部疼痛,2例仅背部疼痛,6例为下肢放射病。在10个病例中,患者曾接受病理学级别的手术。结果在表 1中汇总。 <p class="jove_content" fo:keep-tog…

Discussion

描述的过程有几个关键步骤。第一个关键步骤是注册过程。参考电弧必须放置在实心骨中,并应正确定向,以避免在必要时干扰 S1 脚踏螺钉放置。第二个关键步骤是执行术中CT扫描后保持导航的准确性,这可以通过识别正常的解剖结构并确认正确的定位来完成。应定期验证准确性。也许所述技术的一个限制是,在操作过程中可能会无意中更改导航。注册派生自手术台上的固定患者位置。因此,患者或参?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢UCSF医疗中心和神经外科,允许我们进行这一努力。

Materials

O-arm intraoperative CT Medtronic, Minneapolis, MN
Stealth Navigation System Medtronic, Minneapolis, MN
Jamshidi Needles for bone marrow biopsy
Cefazolin  antibiotic.
Vicryl Sutures
Steri-Strips for skin closure
telfa dressing
tegaderm for dressing
Jackson table
15-blade
High-speed bone drill
Tubular dilator
K-wires
Reduction towers
TLIF retractor
2 or 3 mm Kerrison rongeur
Woodson elevator
Disc shaver and distractor
Fluoroscopy
Allograft cellular bone matrix
Interbody cage
Rod
Soft lumbar brace
X-ray
Patient-controlled analgesia pump

References

  1. Mobbs, R. J., Phan, K., Malham, G., Seex, K., Rao, P. J. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 1 (1), 2-18 (2015).
  2. Foley, K. T., Holly, L. T., Schwender, J. D. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 28, S26-S35 (2003).
  3. Foley, K. T., Lefkowitz, M. A. Advances in minimally invasive spine surgery. Clin Neurosurg. 49, 499-517 (2002).
  4. Schwender, J. D., Holly, L. T., Rouben, D. P., Foley, K. T. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 18 Suppl, S1-S6 (2005).
  5. Lee, K. H., Yue, W. M., Yeo, W., Soeharno, H., Tan, S. B. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 21 (11), 2265-2270 (2012).
  6. Peng, C. W., Yue, W. M., Poh, S. Y., Yeo, W., Tan, S. B. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 34 (13), 1385-1389 (2009).
  7. Schizas, C., Tzinieris, N., Tsiridis, E., Kosmopoulos, V. Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop. 33 (6), 1683-1688 (2009).
  8. Seng, C., et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine (Phila Pa 1976). 38 (23), 2049-2055 (2013).
  9. Shunwu, F., Xing, Z., Fengdong, Z., Xiangqian, F. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976). 35 (17), 1615-1620 (2010).
  10. Singh, K., et al. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion). Spine J. 14 (8), 1694-1701 (2014).
  11. Wong, A. P., et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 25 (2), 279-304 (2014).
  12. Clark, J. C., Jasmer, G., Marciano, F. F., Tumialan, L. M. Minimally invasive transforaminal lumbar interbody fusions and fluoroscopy: a low-dose protocol to minimize ionizing radiation. Neurosurg Focus. 35 (2), E8 (2013).
  13. Ringel, F., Villard, J., Ryang, Y. M., Meyer, B. Navigation, robotics, and intraoperative imaging in spinal surgery. Adv Tech Stand Neurosurg. 41, 3-22 (2014).
  14. Overley, S. C., Cho, S. K., Mehta, A. I., Arnold, P. M. Navigation and Robotics in Spinal Surgery: Where Are We Now. Neurosurgery. 80, S86-S99 (2017).
  15. Abdullah, K. G., et al. Radiation exposure to the spine surgeon in lumbar and thoracolumbar fusions with the use of an intraoperative computed tomographic 3-dimensional imaging system. Spine (Phila Pa 1976). 37 (17), E1074-E1078 (2012).
  16. Gelalis, I. D., et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 21 (2), 247-255 (2012).
  17. Nottmeier, E. W., Bowman, C., Nelson, K. L. Surgeon radiation exposure in cone beam computed tomography-based, image-guided spinal surgery. Int J Med Robot. 8 (2), 196-200 (2012).
  18. Park, P., Foley, K. T., Cowan, J. A., Marca, F. L. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: Feasibility, technique, and preliminary results. Surg Neurol Int. 1, 44 (2010).
  19. Van de Kelft, E., Costa, F., Vander Planken, D., Schils, F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 37 (25), E1580-E1587 (2012).
  20. Kim, T. T., Johnson, J. P., Pashman, R., Drazin, D. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation. Biomed Res Int. 2016, 5716235 (2016).
  21. Kim, M. C., Chung, H. T., Cho, J. L., Kim, D. J., Chung, N. S. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. J Spinal Disord Tech. 26 (2), 87-92 (2013).
  22. Kim, C. W., et al. Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Expandable Technology: A Clinical and Radiographic Analysis of 50 Patients. World Neurosurg. 90, 228-235 (2016).
  23. Malham, G. M., Parker, R. M., Blecher, C. M., Seex, K. A. Assessment and classification of subsidence after lateral interbody fusion using serial computed tomography. J Neurosurg Spine. , 1-9 (2015).
  24. Safaee, M. M., Oh, T., Pekmezci, M., Clark, A. J. Radiation exposure with hybrid image-guidance-based minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci. , (2017).
  25. Yu, E., Khan, S. N. Does less invasive spine surgery result in increased radiation exposure? A systematic review. Clin Orthop Relat Res. 472 (6), 1738-1748 (2014).
  26. Villard, J., et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine (Phila Pa 1976). 39 (13), 1004-1009 (2014).
  27. Tabaraee, E., et al. Intraoperative cone beam-computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): a cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation. Spine (Phila Pa 1976). 38 (22), 1953-1958 (2013).
  28. Theologis, A. A., Burch, S., Pekmezci, M. Placement of iliosacral screws using 3D image-guided (O-Arm) technology and Stealth Navigation: comparison with traditional fluoroscopy. Bone Joint J. 98-B. 98-B (5), 696-702 (2016).
  29. Mendelsohn, D., et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 16 (3), 343-354 (2016).
  30. Shin, B. J., Njoku, I. U., Tsiouris, A. J., Hartl, R. Navigated guide tube for the placement of mini-open pedicle screws using stereotactic 3D navigation without the use of K-wires: technical note. J Neurosurg Spine. 18 (2), 178-183 (2013).
  31. Lian, X., et al. Total 3D Airo(R) Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion. Biomed Res Int. 2016, 5027340 (2016).
  32. Navarro-Ramirez, R., et al. Total Navigation in Spine Surgery; A Concise Guide to Eliminate Fluoroscopy Using a Portable Intraoperative Computed Tomography 3-Dimensional Navigation System. World Neurosurg. 100, 325-335 (2017).
check_url/57830?article_type=t

Play Video

Cite This Article
Safaee, M., Oh, T., Pekmezci, M., Clark, A. J. Cone Beam Intraoperative Computed Tomography-based Image Guidance for Minimally Invasive Transforaminal Interbody Fusion. J. Vis. Exp. (150), e57830, doi:10.3791/57830 (2019).

View Video