Summary

利用树形地貌估算板材侵蚀速率的实验室和现场协议

Published: January 07, 2019
doi:

Summary

通过检查暴露引起的宏观或细胞水平变化, 对树状地貌的侵蚀进行表征通常侧重于准确地寻找根系暴露的起始时间。在这里, 我们提供了不同的新技术的详细描述, 以获得更精确的侵蚀率从高精度的微地形数据。

Abstract

板材侵蚀是土壤退化的关键驱动因素之一。侵蚀受到环境因素和人类活动的控制, 往往导致严重的环境影响。因此, 对板材侵蚀的理解是一个世界性的问题, 对环境和经济都有影响。然而, 关于侵蚀如何在空间和时间上演变的知识仍然有限, 以及对环境的影响。下面, 我们解释了一种新的树状地貌协议, 通过使用地面激光扫描 (tls) 和微地形剖面仪获取准确的微地形数据, 得出侵蚀的土壤厚度 (ex)。此外, 标准的树突地貌程序, 取决于根环的解剖变化, 被用来确定接触的时间。tls 和微地形剖面仪都用于获取地表剖面, 在确定阈值距离 (td) 后, 即根部与沉积物之间的距离,地表剖面中估计ex 针织点, 它允许定义由板材侵蚀引起的地表的降低。对于每个轮廓, 我们测量了根的顶部和与地面的虚拟平面切线之间的高度。通过这种方式, 我们打算避免小规模的土壤变形的影响, 这可能是由于根系施加的压力, 或暴露的根系的安排。这可能会引起少量的土壤沉积或侵蚀, 这取决于它们对地表径流的物理影响。我们证明, 充分的微地形表征暴露的根及其相关的地面表面是非常有价值的, 以获得准确的侵蚀率。这一发现可用于制定最佳管理做法, 以便最终或至少减轻土壤侵蚀, 从而将更可持续的管理政策付诸实施。

Introduction

板材侵蚀造成的经济和环境影响使这一话题成为全世界关注的话题 1。从直接技术到基于物理和经验的方法, 有几种方法被用来计算各种时间和空间尺度上的土壤侵蚀率。直接技术在自然条件下使用现场测量, 主要基于 gerlach 槽2、集水器3、侵蚀销4和轮廓计5.此外, 土壤侵蚀模型越来越注重详细地描述造成侵蚀的实际物理过程.

树状地貌7是树突年代学的一个分支, 它成功地表征了地貌过程的频率和大小9,10,11, 12, 13,14,15,16,17。关于片状侵蚀, 通常采用树状地貌来加强或取代上述方法, 特别是在直接技术产生的侵蚀率稀缺或无法获得的地区。树状地貌是一种非常灵活的土壤侵蚀评估方法, 可用于校准基于物理和经验的模型, 也可作为数据来源, 以提高直接估算技术的可靠性 1819. 树状地貌使土壤侵蚀能够在有裸露根系的大片地区建立。这些暴露的根应该显示明确的树环限制, 并响应年生长模式, 被认为是最佳的应用树突地貌技术20。此外, 要取样的暴露根最好根据其对土壤侵蚀反应21位于同质单元中。

传统的单层侵蚀估算方法是以现场测量的侵蚀土厚度 (ex) 为基础的, 从第一次接触到现在的 22,23, 24岁这两个变量之间的比率被用来计算以毫米 * yr 1 为1的侵蚀值。迄今为止进行的许多研究完全侧重于有效地确定接触的最初年份。因此, 在宏观水平 25或组织和细胞水平 26,27, 28, 在根部的修改分析.由于木耳 (ew) 26 内相当数量的细胞, 针叶树外露根部存在的主要解剖变化是生长环厚度的增加.在 ew 气管的腔区内也发现了类似的削减, 同时还增加了 242729的乳木 (lw) 气管的细胞壁结构厚度。这些修改被描述和量化为开始时, 侵蚀降低了地面在根部约3厘米30。对ex 参数的充分确定给予的关注较少。暴露的根系年龄通常与根部在地表上生长的中心轴的高度有关, 为31 3、3 2.因此, 考虑到正在进行的二次增长3033, 对 ex 的估计得到了纠正。最近, 这些方法还结合了土壤微观地形的特征, 以获得可靠的侵蚀率34,35,36

我们提出了一个实验室和现场协议, 以估计更准确和可靠的板材侵蚀率从树突地貌。在这个特定的协议中, 我们研究了这样一个假设, 即对所有暴露的根系进行采样, 而不考虑相对于径流路径的方向, 并结合微观地形分析, 使侵蚀率能够精确地重建和量化。因此, 我们的目标是利用生长树环系列中的宏观和微观信息以及高分辨率地形数据, 提供一种通过最大化暴露根系样本大小来估计侵蚀率的协议。

Protocol

1. 抽样战略 地貌过程识别 实施水文响应单元方法 (hru)21。为此, 确定研究地点内的同质区域, 包括岩性和表层沉积、树冠覆盖、与土壤表面和坡度接触的植物残渣。在所有的人力资源单位中选择那些板材侵蚀过程中占主导地位的国家。 图…

Representative Results

暴露的根部样本由于暴露的影响 (例如温度的变化、光线的入射) 加上身体的压力, 加上身体的压力, 由于徒步者或动物放牧和浏览根部的踩踏, 使根部严重退化经历后, 他们暴露。确定不连续环的存在以及准确确定对接触反应的第一年的日期是在实验室中完成的, 如第4议定书 (4.1.6 4.1.8 步骤) 所述。我们选择了增加木的百分比和树环的存在明显地大于平均水平作为首次…

Discussion

所采用的协议证明了对地表微观地形进行详细和适当定性的价值, 因为它能够从树状地貌中测量值得信赖的片状侵蚀率。我们的方法侧重于描述暴露根系周围的微观地形的重要性, 以提高侵蚀率估计。这一因素在以前的研究中基本上被忽视, 导致对从树状地貌34中得出的土壤侵蚀率的误解。包含微观地形可以估计侵蚀速率, 而不考虑根方向, 这有利于方法35的可复?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

资助这项研究的研究项目是: marconi (cgl2013-42728-r);dendro-avenidas (CGL2007-62063);西班牙科技部 mas dendro-avenidas (CGL2010-19274) 和由西班牙环境部资助的 idea-gesppnn (oapn 163/2010) 项目。

Materials

Topographic map, soil map, land cover map To be obtained from public institutions or generate at the first phase of research
Single ring infiltometer Turf-Tec International IN16-W http://www.turf-tec.com/IN16Lit.html
Handsaw There is noy any specific characteristics to be considered regarding the model
Measuring tape With accuracy of 1 mm
Terrestrial Laser Scanning (TLS) Leica-Geosystems Leica ScanStation P16 https://leica-geosystems.com/products/laser-scanners/scanners/leica-scanstation-p16
Microtopographic Profile Gauge RS Online Facom, 19 https://www.classic-conservation.com/es/herramientas-para-talla-y-escultura-en-madera/511-galga-medidora-de-perfiles.html
Sandpaper from 80 to 400 grit
Scanner EPSON Perfection V800 Photo https://www.epson.co.uk/products/scanners/consumer-scanners/perfection-v800-photo
Image analysis system Regent Instruments Inc. WinDENDRO http://www.regentinstruments.com/assets/windendro_analysisprocess.html
Measuring table IML https://www.iml-service.com/product/iml-measuringtable/
Sliding microtome Thermo Fisher SCIENTIFIC Microm HM 450-387760 http://www.thermofisher.com/order/catalog/product/910020
Optical microscope OLYMPUS MX63/MX63L https://www.olympus-ims.com/en/microscope/mx63l/
Digital camera for microscope OLYMPUS DP74 https://www.olympus-ims.com/en/microscope/dc/
Safranin Empirical Formula (Hill Notation) C20H19ClN4 
Astrablue Empirical Formula C47H52CuN14O6S3
Alcohol Alcohol by volume (50%, 75% and 100%)
Distilled water H2O
Citrus oil clearing agent https://www.nationaldiagnostics.com/histology/product/histo-clear
Coated slides Thermo Fisher SCIENTIFIC https://www.fishersci.com/us/en/products/I9C8JXMT/coated-glass-microscope-slides.html
Hardening epoxy MERCK https://www.sigmaaldrich.com/catalog/product/sial/03989?lang=es&region=ES

References

  1. Montgomery, D. R. Soil erosion and agricultural sustainability. Proceedings of the National Academic of Sciences of the United States of America. 104 (33), 13268-13272 (2007).
  2. Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research. 117, 140-147 (2011).
  3. Desir, G., Marín, C. Factors controlling the erosion rates in a semi-arid zone (Bardenas Reales, NE Spain). Catena. 71 (1), 31-40 (2007).
  4. Shi, Z., Wen, A., Zhang, X., Yan, D. Comparison of the soil losses from 7Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China. Applied Radiation and Isotopes. 69 (10), 1343-1348 (2011).
  5. Sirvent, J., Desir, G., Gutierrez, M., Sancho, C., Benito, G. Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain). Geomorphology. 18 (2), 61-75 (1997).
  6. Flanagan, D., Ascough, J., Nearing, M., Laflen, J., Harmon, R. S., Doe, W. W. The Water Erosion Prediction Project (WEPP) model. Landscape Erosion and Evolution Modelling. , 145-199 (2001).
  7. Alestalo, J. Dendrochronological interpretation of geomorphic processes. Fennia -International Journal of Geography. 105, 1-139 (1971).
  8. Cook, E. R., Kalriukstis, L. A. Methods of Dendrochronology. Methods of Dendrochronology. , 97-104 (1990).
  9. Pelfini, M. Dendrogeomorphological study of glacier fluctuations in the Italian Alps during the Little Ice Age. Annals of Glaciology. 28 (1639), 123-128 (1999).
  10. Malik, I., Matyja, M. Bank erosion history of a mountain stream determined by means of anatomical changes in exposed tree roots over the last 100 years (Bílá Opava River – Czech Republic). Geomorphology. 98 (1-2), 126-142 (2008).
  11. Stoffel, M., Bollschweiler, M., Butler, D., Luckman, B. . Tree Rings and Natural Hazards: A State-of-the-art. , (2010).
  12. Ballesteros, J. A., Bodoque, J. M., Díez-Herrero, A., Sanchez-Silva, M., Stoffel, M. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology. 403 (1-2), 103-115 (2011).
  13. Procter, E., Stoffel, M., Schneuwly-Bollschweiler, M., Neumann, M. Exploring debris-flow history and process dynamics using an integrative approach on a dolomitic cone in western Austria. Earth Surface Processes and Landforms. 37 (9), 913-922 (2012).
  14. Corona, C., Saez, J. L., Stoffel, M., Rovéra, G., Edouard, J. L., Berger, F. Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. Holocene. 23 (2), 292-304 (2013).
  15. Ballesteros-Cánovas, J. A., et al. Can tree tilting be used for paleoflood discharge estimations?. Journal of Hydrology. 529 (P2), 480-489 (2015).
  16. Šilhán, K. Dendrogeomorphic chronologies of landslides: Dating of true slide movements. Earth Surface Processes and Landforms. 42 (13), 2109-2118 (2017).
  17. Ballesteros Cánovas, J. A., et al. Gully evolution and geomorphic adjustments of badlands to reforestation. Scientific Reports. , (2017).
  18. Ballesteros-Cánovas, J. A., et al. Dendrogeomorphology in badlands: Methods, case studies and prospects. Catena. 106, 113-122 (2013).
  19. Stoffel, M., Corona, C., Ballesteros-Cánovas, J. A., Bodoque, J. M. Dating and quantification of erosion processes based on exposed roots. Earth-Science Reviews. 123, 18-34 (2013).
  20. Grissino-Mayer, H. D. An updated list of species used in tree-ring research. Tree-Ring Bulletin. 53, 17-43 (1993).
  21. Bodoque, J. M., Lucía, A., Ballesteros, J. A., Martín-Duque, J. F., Rubiales, J. M., Genova, M. Measuring medium-term sheet erosion in gullies from trees: A case study using dendrogeomorphological analysis of exposed pine roots in central Iberia. Geomorphology. 134 (3-4), 417-425 (2011).
  22. LaMarche, V. Rate of slope erosion in the White Mountains, California. Geological Scociety of America Bulletin. 72 (10), 1579-1580 (1961).
  23. LaMarche, V. C. Rates of Slope Degradation as Determined from Botanical Evidence White Mountains California Rates of Slope Degradation as Determined from Botanical Evidence White Mountains California. U.S. Geological Survey Professional Paper. 352 (1), 354-376 (1968).
  24. Bodoque, J. M., Dies-Herrero, A., Martin-Duque, J. F., Rubiales, J. M., Godfrey, A., Pedraza, J., Carrasco, R. M., Sanz, M. A. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena. 64 (1), 81-102 (2005).
  25. Carrara, P. E., Carroll, T. R. The determination of erosion rates from exposed tree roots in the piceance basin, colorado. Earth Surface Processes and Landforms. 4 (4), 307-317 (1979).
  26. Fayle, D. . Radial Growth in Tree Roots – Distribution, Timing, Anatomy. , (1968).
  27. Gärtner, H., Schweingruber, F., Dikau, R. Determination of erosion rates by analyzing structural changes in the growth pattern of ex- posed roots. Dendrochronologia. 19, 81-91 (2001).
  28. Hitz, O. M., Gärtner, H., Heinrich, I., Monbaron, M. Application of ash (Fraxinus excelsior L.) roots to determine erosion rates in mountain torrents. Catena. 72 (2), 248-258 (2008).
  29. Rubiales, J. M., Bodoque, J. M., Ballesteros, J. A., Diez-Herrero, A. Response of Pinus sylvestris roots to sheet-erosion exposure: An anatomical approach. Natural Hazards and Earth System Science. 8 (2), 223-231 (2008).
  30. Corona, C., Lopez Saez, J., Rovéra, G., Stoffel, M., Astrade, L., Berger, F. High resolution, quantitative reconstruction of erosion rates based on anatomical changes in exposed roots at Draix, Alpes de Haute-Provence – critical review of existing approaches and independent quality control of results. Geomorphology. 125 (3), 433-444 (2011).
  31. McAuliffe, J. R., Scuderi, L. A., McFadden, L. D. Tree-ring record of hillslope erosion and valley floor dynamics: Landscape responses to climate variation during the last 400 yr in the Colorado Plateau, northeastern Arizona. Global and Planetary Change. 50 (3-4), 184-201 (2006).
  32. Danzer, S., Dean, J., Meko, D. M., Sewtnam, T. W. Rates of slope erosion determined from exposedroots of ponderosa pine at Rose Canyon Lake, Arizona. Tree Rings, Environment, and Humanity. , 671-678 (1996).
  33. Gärtner, H. Tree roots – Methodological review and new development in dating and quantifying erosive processes. Geomorphology. 86 (3-4), 243-251 (2007).
  34. Bodoque, J. M., Ballesteros-Cánovas, J. A., Lucía, A., Díez-Herrero, A., Martín-Duque, J. F. Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surface Processes and Landforms. 40 (9), 1146-1157 (2015).
  35. Ballesteros-Cánovas, J. A., Corona, C., Stoffel, M., Lucia-Vela, A., Bodoque, J. M. Combining terrestrial laser scanning and root exposure to estimate erosion rates. Plant and Soil. 394 (1-2), 127-137 (2015).
  36. Bodoque, J. M., Ballesteros-Cánovas, J. A., Rubiales, J. M., Perucha, M. &. #. 1. 9. 3. ;., Nadal-Romero, E., Stoffel, M. Quantifying Soil Erosion from Hiking Trail in a Protected Natural Area in the Spanish Pyrenees. Land Degradation & Development. 28, 2255-2267 (2017).
  37. Misra, R., Dexter, A., Alston, A. Maximum axial and radial growth pressures of plant-roots. Plant and Soil. 95 (3), 315-326 (1996).
  38. Clark, L. J., Bengough, A. G., Whalley, W. R., Dexter, A. R., Barraclough, P. B. Maximum axial root growth pressure in pea seedlings: Effects of measurement techniques and cultivars. Plant and Soil. 209 (1), 101-109 (1999).
  39. Gärtner, H., Cherubini, P., Fonti, P., von Arx, G., Schneider, L., Nievergelt, D., Verstege, A., Bast, A., Schweingruber, F. H., Büntgen, U. A. A Technical Perspective in Modern Tree-ring Research – How to Overcome Dendroecological and Wood Anatomical Challenges. Journal of Visualized Experiments. (97), 1-10 (2015).
  40. Antonova, G., Stasova, V. Effects of environmental factors on wood formation in Scots pine stems. Trees. 7 (4), 214-219 (1993).
  41. Saez, J. L., Corona, C., Stoffe, M., Rovéra, G., Astrade, L., Berger, F. Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data. Earth Surface Processes and Landforms. 36 (9), 1162-1171 (2011).
  42. Zimmermann, M. . Xylem Structure and the Ascent of Sap. , (1983).
  43. Tyree, M., Sperry, J. Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant, Cell and Environment. 12, 371-382 (1989).
  44. Zheng, M., Chen, X. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau. PLoS One. 10 (3), 1-18 (2015).
  45. Morgan, R. P., Quiton, J. N., Smith, R. E., Govers, G., Poesen, J. W., Auerswald, K., Chisci, G., Torri, D., Stycaen, M. E. The European Soil Erosion Model (Eurosem): a Dynamic Approach for Predicting Sediment Transport From. Earth Surface Processes and Landforms. 23, 527-544 (1998).
  46. Ciampalini, R., Follain, S., Le Bissonnais, Y. LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution. Geomorphology. 175, 25-37 (2012).
  47. Hammitt, W., Cole, D. . Wildland recreation: ecology and management. , (1998).
  48. Marion, J. L., Leung, Y. F., Nepal, S. K. Monitoring trail conditions: new methodological considerations. George Wright Society Forum. 23 (2), 36-49 (2006).
  49. Tomczyk, A. M., Ewertowski, M. W. Recreational trails in Poprad Landscape Park , Poland the spatial pattern of trail impacts and use-related, environmental and managerial factors. Journal of Maps. 12, 1227-1235 (2015).
  50. Jewell, M. C., Hammitt, W. E., Cole, D. N., McCool, S. F., Borrie, W. T., O’Loughlin, J. Assessing soil erosion on trails: A comparison of techniques. Proceedings: Wilderness Science in a time of change Conference Volume 5: Wilderness Ecosystems, Threats, and Management (Proceedings RMRS-P-15-VOL-5). , 133-140 (2000).
  51. Krause, C., Eckstein, D. Dendrochronology of roots. Dendrochronologia. 11, 9-23 (1993).
  52. Krause, C., Morin, H. Root growth and absent rings in mature black spruce and balsam fir, Quebec, Canada. Dendrochronologia. 16, 21-35 (1999).
  53. Poesen, J. Gully erosion and environmental change: importance and research needs. Catena. 50 (2-4), 91-133 (2003).
  54. Favis-Mortlock, D., Boardman, J. Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena. 25 (1-4), 365-387 (1995).
  55. Boardman, J., Favis-mortlock, D. Frequency-magnitude distributions for soil erosion, runoff and rainfall – a comparative analysis. Zeitschrift für Geomorphologie. 115, 51-70 (1999).
  56. Haubrock, S. N., Kuhnert, M., Chabrillat, S., Güntner, A., Kaufmann, H. Spatiotemporal variations of soil surface roughness from in situ laser scanning. Catena. 79 (2), 128-139 (2009).

Play Video

Cite This Article
Bodoque, J. M., Ballesteros-Cánovas, J. A., Rubiales, J. M., Stoffel, M. Laboratory and Field Protocol for Estimating Sheet Erosion Rates from Dendrogeomorphology. J. Vis. Exp. (143), e57987, doi:10.3791/57987 (2019).

View Video