Summary

Detecção de vírus de Bioaerossóis usando resina de troca de ânion

Published: August 22, 2018
doi:

Summary

Um ânion trocar o método à base de resina, adaptado para amostragem de bioaerosol baseado em choque de vírus é demonstrada o líquido. Quando acoplado com deteção molecular a jusante, o método permite a fácil e sensível de detecção de vírus de Bioaerossóis.

Abstract

Este protocolo demonstra um método de amostragem de bioaerosol personalizado para vírus. Neste sistema, a resina de troca de ânion é acoplada com dispositivos de amostragem líquida baseada no choque do ar para a concentração eficaz de vírus com carga negativa da Bioaerossóis. Assim, a resina serve como um passo adicional de concentração do fluxo de trabalho de amostragem de bioaerosol. Extração de ácidos nucleicos de partículas virais, em seguida, é executada directamente a partir da resina de troca de ânion, com a amostra resultante apropriada para análises moleculares. Além disso, este protocolo descreve uma câmara de bioaerosol custom-built, capaz de gerar Bioaerossóis carregados de vírus sob uma variedade de condições ambientais e permitindo a monitorização contínua das variáveis ambientais tais como temperatura, umidade, velocidade do vento e a concentração em massa de aerossol. A principal vantagem de usar este protocolo é o aumento da sensibilidade de detecção viral, avaliada através da comparação direta para um impinger líquido convencional sem modificações. Outras vantagens incluem o potencial de concentrar diversos vírus de carga negativa, o baixo custo da resina de troca de ânion (~$0.14 por exemplo) e facilidade de uso. As desvantagens incluem a incapacidade do presente protocolo para avaliar a infectividade de resina-adsorvido em partículas virais, e potencialmente a necessidade para a otimização da reserva líquida de amostragem usado dentro do impactor.

Introduction

A finalidade desse método é proporcionar uma plataforma de amostragem de bioaerosol altamente sensível para facilitar a detecção molecular do vírus de carga negativa de Bioaerossóis. Microorganismos, incluindo partículas virais, Bioaerossóis podem sobreviver por longos períodos de tempo de1. Bioaerossóis podem viajar distâncias relativamente longas e manter a viabilidade e a infectividade, como evidenciado por um surto de doença do legionário que originou-se industrial localizados a uma distância de 6 km dos indivíduos afetados de torres de resfriamento e resultou em 18 mortes2. Transmissão indirecta de vírus para os seres humanos mediados por Bioaerossóis pode ocorrer em várias configurações e tem sido demonstrado por norovírus surtos em escolas e restaurantes3,4. Da mesma forma, bioaerosol transmissão do vírus pode ocorrer em configurações agrícolas como em explorações de suínos e aves de capoeira, com esta rota de transmissão, sendo considerada como um fator importante no movimento de vírus entre as instalações de produção5, 6 , 7 , 8 , 9.

Amostragem eficaz de Bioaerossóis carregados de vírus permite a melhoria no diagnóstico rápido e preparação para a prevenção da epidemia, como mostrado em manifestações nas quais H5 gripe, um vírus foram detectados de Bioaerossóis no animal vivo comercializa na China e a Estados Unidos10,11. Tecnologias atuais de amostragem de bioaerosol envolvem uma série de princípios de captura de partículas diferentes e podem ser amplamente classificadas em impingers, ciclones, pêndulos e filtros12. Está além do escopo do presente protocolo a cobrir exaustivamente todas as vantagens e desvantagens dessas plataformas para amostragem de vírus de Bioaerossóis; no entanto, pode ser declarado que a maioria destes dispositivos de amostragem não foram otimizada para a coleção de vírus e bacteriófagos13. Além disso, infecciosidade de partículas virais é muitas vezes negativamente, com líquido impingers considerados para manter a infectividade viral mais eficazmente do que dispositivos como sólidos de pêndulos ou filtros14de amostragem. No entanto, uma desvantagem de choque do líquido é o efeito de diluição do alvo, que ocorre porque os vírus são coletados em volumes relativamente grandes (tipicamente ≥ 20 mL) de líquido no recipiente coleção. Outra desvantagem importante envolve a eficiência subótima de líquido impingers para concentrar partículas < 0.5 µM em tamanho15. No entanto, eficiência de captura desses dispositivos pode ser melhorada por imobilização em matrizes sólidas, como imobilização pode aumentar a conservação do viral de ácidos nucleicos e infectividade viral16,17.

Nós demonstramos anteriormente que a resina de troca de ânion é uma ferramenta eficaz para a captura e a concentração de vírus do líquido matrizes, incluindo F-RNA bacteriófagos, vírus da hepatite A, adenovírus humano e rotavírus18,19 ,20. Como definido pelo fabricante, a resina de troca de ânion utilizada neste trabalho é uma resina de troca aniônica de base forte poliestireno macroreticular em que amina quaternária funcionalizados grupos mediato atração e captura de anions em um líquido médio21 . Consequentemente, a resina de troca de ânion é esperada para capturar o vírus com cargas de superfície net-negativo, incluindo muitos vírus entéricos, vírus da gripe e outros vírus relevantes para a saúde pública e animal.

O protocolo atual envolve a adição de resina de troca de ânion de um impactor líquido. Neste sistema, a resina serve como uma etapa de concentração secundária para partículas virais capturado no líquido impactor. Ácidos nucleicos pode então ser eluídos diretamente em pequenos volumes, fornecendo uma amostra concentrada para análises moleculares. Assim, a principal vantagem deste método é a melhoria na sensibilidade de detecção viral, principalmente através da redução no volume de amostra. Além disso, devido a inerente específico captura de vírus com carga negativa, o método é provável aplicável para a deteção de um grande número de vírus de interesse. Aqui, o método é demonstrado por estirpes vacinais de tipo A e o vírus da influenza tipo B e o coliphage FRNA MS2 (MS2). Estes vírus são detectados posteriormente utilizando ensaios de qRT-PCR padrão como descrito anteriormente,22. O usuário de ponto de extremidade não deve esperar encontrar dificuldades em realizar esse método, porque as modificações aos atualmente existentes equipamentos não constituem grandes perturbações ao fluxo convencional de análise e amostragem de bioaerosol.

Protocol

1. instalação da câmara Bioaerosol (ver Figura 2) Pré-carrega os líquido impingers com 20 mL de 0,01 M tamponado fosfato salina, pH 7,5 (PBS). Adicionar 0,5 g de resina de troca de ânion e suspender dentro da PBS de dentre os impingers líquidos, com outro líquido impactor servindo como um controle. Impingers líquidos de posição em paralelo no interior da câmara de bioaerosol usando braçadeira carrinhos com entradas de …

Representative Results

A Figura 1 demonstra o princípio por trás de captura com base em carga de vírus de Bioaerossóis através da inclusão de resina em impingers líquido-baseado. A Figura 2 mostra a configuração da câmara bioaerosol custom-built. A Figura 3 descreve as etapas envolvidas na criação da experiência de clorofórmio e medidas para garantir o controle de qualidade. A Figura 4</s…

Discussion

Este protocolo descreve um método para a captura de viral sensível de Bioaerossóis usando impingers líquidos modificados. O método é otimizado para detecção e quantificação da carga viral em Bioaerossóis. A modificação específica demonstrada aqui envolve a adição de resina de troca de ânion ao líquido contido em um impinger líquido comum. Este método foi desenvolvido por sua simplicidade no processamento da amostra a jusante, Considerando que outras técnicas de processamento de amostra como centrifug…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pelo financiamento do CDC/NIOSH altas planícies Intermountain centro agrícola de saúde e segurança (5U54OH008085) e o programa de concessão de avaliação do Colorado Bioscience descoberta (14BGF-16).

Materials

Escherichia coli bacteriophage MS2 (ATCC 15597-B1) American Type Culture Collection ATCC 15597-B1
FluMist Quadrivalent AstraZeneca Contact manufacturer Viral constitutents of this vaccine are subject to change on an annual basis
CFX96 Touch Real-Time PCR Detection System Bio-Rad 1855195
Primers and probes Integrated DNA Technologies NA
0.2 µM sterile filter NA NA
1 L pyrex bottles or equivalent NA NA
1 mL pipet tips NA NA
1 mL pipettor NA NA
50 mL serological pipet NA NA
PCR tubes NA NA
Pipet-aid or equivalent NA NA
QIAamp Viral RNA Mini Kit Qiagen 52904
QuantiTect Probe RT-PCR Kit Qiagen 204443
Amberlite IRA-900 chloride form Sigma-Aldrich 216585-500G
Phosphate buffered saline Sigma-Aldrich P5368-10PAK
Water (molecular biology grade) Sigma-Aldrich W4502-1L
Eppendorf DNA LoBind Microcentrifuge Tubes ThermoFisher 13-698-791
Falcon 50 mL Conical Centrifuge Tubes  ThermoFisher 14-432-22
Falcon Polypropylene Centrifuge Tubes ThermoFisher 05-538-62
SuperScript III Platinum One-Step qRT-PCR Kit w/ROX ThermoFisher 11745100
SKC Biosampler 20 mL, 3-piece glass set SKC Inc. 225-9593
Vac-u-Go sample pumps SKC Inc. 228-9695
Collison nebulizer (6-jet) BGI Inc. NA
HEPA capsule PALL 12144
Q-TRAK indoor air quality monitor 8554 TSI Inc. NA
Alnor velometer thermal anemometer AVM440-A TSI Inc. NA
SidePak AM510 personal aerosol monitor TSI Inc. NA
Bioaerosol chamber NA NA

References

  1. Pirtle, E. C., Beran, G. W. Virus survival in the environment. Revue scientifique et technique (International Office of Epizootics). 10 (3), 733-748 (1991).
  2. Nguyen, T. M., et al. A community-wide outbreak of legionnaires disease linked to industrial cooling towers–how far can contaminated aerosols spread?. The Journal of Infectious Diseases. 193 (1), 102-111 (2006).
  3. Marks, P. J., et al. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiology and Infection. 124 (3), 481-487 (2000).
  4. Marks, P. J., et al. A school outbreak of Norwalk-like virus: Evidence for airborne transmission. Epidemiology and Infection. 131 (1), 727-736 (2003).
  5. Corzo, C. A., Culhane, M., Dee, S., Morrison, R. B., Torremorell, M. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PLoS One. 8 (8), e71444 (2013).
  6. Anderson, B. D., et al. Bioaerosol sampling in modern agriculture: A novel approach for emerging pathogen surveillance. The Journal of Infectious Diseases. 214 (4), 537-545 (2016).
  7. Hietala, S. K., Hullinger, P. J., Crossley, B. M., Kinde, H., Ardans, A. A. Environmental air sampling to detect exotic Newcastle disease virus in two California commercial poultry flocks. Journal of Veterinary Diagnostic Investigation. 17 (2), 198-200 (2005).
  8. Jonges, M., et al. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outbreaks at commercial poultry farms. PLoS One. 10 (5), e0125401 (2015).
  9. Otake, S., Dee, S. A., Jacobson, L., Torremorell, M., Pijoan, C. Evaluation of aerosol transmission of porcine reproductive and respiratory syndrome virus under controlled field conditions. The Veterinary Record. 150 (26), 804-808 (2002).
  10. Wu, Y., et al. Aerosolized avian influenza A (H5N6) virus isolated from a live poultry market, China. The Journal of Infection. 74 (1), 89-91 (2017).
  11. Choi, M. J., et al. Live animal markets in Minnesota: A potential source for emergence of novel influenza A viruses and interspecies transmission. Clinical Infectious Diseases. 61 (9), 1355-1362 (2015).
  12. Haig, C. W., Mackay, W. G., Walker, J. T., Williams, C. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. The Journal of Hospical Infection. 93 (3), 242-255 (2016).
  13. Anderson, B. D., Lednicky, J. A., Torremorell, M., Gray, G. C. The use of bioaerosol aampling for airborne virus surveillance in swine production facilities: A mini review. Frontiers in Veterinary Science. 4, 121 (2017).
  14. Verreault, D., Moineau, S., Duchaine, C. Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews. 72 (3), 413-444 (2008).
  15. Hogan, C. J. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology. 99 (6), 1422-1434 (2005).
  16. Yu, K. -. P., Chen, Y. -. P., Gong, J. -. Y., Chen, Y. -. C., Cheng, C. -. C. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration. Journal of Aerosol Science. 101, 133-143 (2016).
  17. Perez-Mendez, A., et al. Evaluation of a simple and cost effective filter paper-based shipping and storage medium for environmental sampling of F-RNA coliphages. J Virol Methods. 194 (1-2), 60-66 (2013).
  18. Chandler, J. C., et al. Field-based evaluation of a male-specific (F+) RNA coliphage concentration method. Journal of Virological Methods. 239, 9-16 (2017).
  19. Perez-Mendez, A., Chandler, J. C., Bisha, B., Goodridge, L. D. Concentration of enteric viruses from tap water using an anion exchange resin-based method. Journal of Virological Methods. 206, 95-98 (2014).
  20. Perez-Mendez, A., Chandler, J. C., Bisha, B., Goodridge, L. D. Evaluation of an anion exchange resin-based method for concentration of F-RNA coliphages (enteric virus indicators) from water samples. Journal of Virological Methods. 204, 109-115 (2014).
  21. Kammerer, J., Carle, R., Kammerer, D. R. Adsorption and ion exchange: Basic principles and their application in food processing. Journal of Agricultural and Food Chemistry. 59 (1), 22-42 (2011).
  22. Chandler, J. C., et al. A method for the improved detection of aerosolized influenza viruses and the male-specific (F+) RNA coliphage MS2. Journal of Virological Methods. 246, 38-41 (2017).
  23. Friedman, S. D., Cooper, E. M., Calci, K. R., Genthner, F. J. Design and assessment of a real time reverse transcription-PCR method to genotype single-stranded RNA male-specific coliphages (Family Leviviridae). Journal of Virological Methods. 173 (2), 196-202 (2011).
  24. Selvaraju, S. B., Selvarangan, R. Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses. Journal of Clinical Microbiology. 48 (11), 3870-3875 (2010).
  25. Cademartiri, R., et al. Immobilization of bacteriophages on modified silica particles. Biomaterials. 31 (7), 1904-1910 (2010).
  26. Michen, B., Graule, T. Isoelectric points of viruses. Journal of Appled Microbiology. 109 (2), 388-397 (2010).
  27. Turgeon, N., Toulouse, M. J., Martel, B., Moineau, S., Duchaine, C. Comparison of five bacteriophages as models for viral aerosol studies. Applied and Environmental Microbiology. 80 (14), 4242-4250 (2014).
  28. Vergara, G. G., et al. Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment. Water Research. 79, 39-47 (2015).
  29. Tung-Thompson, G., Libera, D. A., Koch, K. L., de Los Reyes, F. L., Jaykus, L. A. Aerosolization of a human norovirus surrogate, bacteriophage MS2, during simulated vomiting. PLoS One. 10 (8), e0134277 (2015).
check_url/58111?article_type=t

Play Video

Cite This Article
Schaeffer, J. W., Chandler, J. C., Davidson, M., Magzamen, S. L., Pérez-Méndez, A., Reynolds, S. J., Goodridge, L. D., Volckens, J., Franklin, A. B., Shriner, S. A., Bisha, B. Detection of Viruses from Bioaerosols Using Anion Exchange Resin. J. Vis. Exp. (138), e58111, doi:10.3791/58111 (2018).

View Video