Summary

微波热解法制备了更高氮素/氧螯合吸附的生物物质基介孔碳对 cu (ii) 的研究

Published: February 12, 2019
doi:

Summary

本文提出了一种在不同热解模式下, 通过化学活化和改性法合成生物质氮氧/双掺杂介孔碳的方案。我们证明, 微波热解有利于随后的改性过程, 同时引入更多的氮和氧官能团的碳。

Abstract

提出了一种对铜 (ii) 进行高氮氧螯合吸附的生物质介孔活性炭的环保技术。以磷酸浸渍的甘蔗渣为前体。为了对前体进行热解, 采用了两种独立的加热方式: 微波热解和传统的电加热热解。由此产生的甘蔗渣衍生的碳样品通过硝化和还原改性进行了改性。氮 (n)/氧 (o) 官能团同时引入活性炭表面, 通过络合和离子交换提高其对铜 (ii) 的吸附。通过表征和铜吸附实验, 研究了四个制备的碳样品的理化性质, 确定哪种加热方法有利于随后对 nto 官能团的掺杂进行改性。该技术在分析氮吸附、傅里叶变换红外光谱和批量吸附实验数据的基础上, 证明了微波热解碳具有较多的缺陷位点, 从而节省了时间的有效微波。热解对碳贡献了更多的 nno 物种, 尽管它导致了更低的比表面积。该技术为合成氮、氧含量较高的吸附剂提供了一条很有前途的途径, 并为重金属离子在废水修复应用中的吸附能力提供了更高的吸附能力。

Introduction

活性炭具有独特的吸附性能, 如多孔结构发达、比表面积高、表面官能团多;因此, 它被用作水处理或净化1,2,3,4的吸附剂。活性炭除了具有物理优点外, 还具有成本效益, 对环境无害, 其原料 (生物量) 丰富, 容易获得5,6。活性炭的物理化学特性取决于其制备过程中使用的前体和活化过程的实验条件7

通常使用两种方法制备活性炭: 一步和两步方法8。”一步到位” 一步方法指的是先质体同时被碳化和激活, 而两步方法则是按顺序提到的。从节能环保的角度来看, 一步方法更倾向于降低温度和压力要求。

此外, 还利用化学和物理活化来改善活性炭的结构性能。化学活化具有较低的活化温度、较短的活化时间、较高的碳产率、在一定程度上更发达、可控的孔隙结构 9,具有明显的优势。已测试, 化学活化可以通过浸渍生物质浸渍生物质作为原料与 h3 po 4,zncl2, 或其他特定化学品, 然后热解, 以增加活性炭的孔隙率, 因为由于这些物质的脱氢能力 1011, 通过后续的加热处理可以很容易地去除生物质的木质纤维素成分。因此, 化学活化大大增强了活性炭毛孔的形成, 或提高了对污染物12的吸附性能。酸性激活剂比 h3 po4更受欢迎, 因为它的能源需求相对较低, 产量较高, 对环境的影响较小13.

微波热解具有节省时间、室内加热均匀、节能、选择性加热等优点, 使其成为合成活性炭1415 的替代加热方法。与传统的电加热相比, 微波热解可以增强热化学过程, 促进某些化学反应.最近, 广泛的研究重点是利用一步微波热解9171819从生物质中化学活化制备活性炭。因此, 微波辅助 h3 po 4 活化合成生物物质活性炭具有十分丰富的信息量和环保性.

此外, 为了提高活性炭对特定重金属离子的吸附亲和力, 提出了利用异质原子 [n、o、硫 (s)) 将掺杂到碳结构中的方法, 这已被证明是一种理想的方法20212223242526。石墨层内部或边缘的缺陷位点可以被异质原子所取代, 从而产生功能基团27。因此, 硝化和还原改性被用来修改由此产生的碳样品, 使其成为涂料 nto 功能基团, 在有效地与重金属协调形成络合和离子交换28方面发挥着至关重要的作用。

基于以上发现, 我们提出了一种利用化学活化法合成生物质中的 n o 双掺杂介孔碳的方法, 以及两种不同的热解方法, 并进行了改性。该协议还确定了哪种加热方法有利于随后对 nto 官能团的掺杂进行改性, 从而提高了吸附性能。

Protocol

1. 制备甘蔗渣活性炭 基于甘蔗渣的活性炭前体的制备 用去离子水冲洗甘蔗渣 (从中国江苏的一个农场获得), 并将样品放入100°c 的烘箱中10小时。 用磨床将干甘蔗粉碎, 并通过50目筛子筛筛粉。 将30克细甘蔗渣粉放入 15 wt% 的磷酸 (h3 po4)溶液中, 重量为 1:1, 重量为 24h. 在105°c 的烤箱中将混合物干燥 6小时, 收集所产生的产品作为甘蔗渣型活…

Representative Results

图 1显示了四个样品的氮吸附吸附和解吸等温线。所有吸附等温线在低 pp0区呈快速增加, 这些等温线属于 iv 型 (iupac 分类), 表明它们的孔隙结构由微孔和优势中孔 32组成。 从氮吸附等温线获得的所有样品的表面物理参数见表 1。微波热解和改性都有助于较小的布鲁纳…

Discussion

在该方案中, 关键的步骤之一是采用一步法成功制备具有较好物理化学性质的介孔碳, 在这种方法中需要确定最佳实验条件。因此, 在前面28, 我们进行了正交阵列微波热解实验, 考虑了甘蔗渣和磷酸的浸渍比, 热解时间, 微波炉功率, 和干燥时间的影响。此外, 在繁琐的铜 (ii) 吸附实验中, 特别是在调整溶液 ph 值时, 必须非常小心, 因为 ph 值对活性炭去除铜 (ii) 有很大影响 (<strong cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者表彰了中国中央大学基础研究基金 (kyz201562)、中国博士后科学基金 (编号 2014m5660429) 和江苏省重点研究开发规划 (编号:BE2018708)。

Materials

All chemicals and reagents (phosphoric acid, etc.) Nanjing Chemical Reagent Co., Ltd Analytical grade
Electric furnace Luoyang Bolaimaite Experiment Electric Furnace Co., Ltd
Microwave oven Nanjing Yudian Automation Technology Co., Ltd 2.45 GHz frequency
Surface-area and porosimetry analyzer Beijing Gold APP Instrument Co., Ltd Vc-Sorb 2800TP
Fourier transform infrared (FTIR) spectrometer Nicolet 6700
Flame atomic absorption spectrophotometry Beijing Purkinje General Instrument Corporation A3
Element Analyzer Germany Heraeus Co. CHN-O-RAPID 

References

  1. Saleh, T. A., Gupta, V. K. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Advances in Colloid & Interface Science. 211, 93 (2014).
  2. Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E., Agarwal, S. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. Journal of Colloid & Interface Science. 362 (2), 457 (2011).
  3. Saleh, T. A., Gupta, V. K. Column with CNT/magnesium oxide composite for lead(II) removal from water. Environmental Science & Pollution Research. 19 (4), 1224-1228 (2012).
  4. Asfaram, A., Ghaedi, M., Agarwal, S., Tyagi, I., Kumargupta, V. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Advances. 5 (24), 18438-18450 (2015).
  5. Gupta, V. K., Saleh, T. A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environmental Science and Pollution Research. 20 (5), 2828-2843 (2013).
  6. Ahmaruzzaman, M., Gupta, V. K. Rice Husk and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment. Industrial & Engineering Chemistry Research. 50 (24), 13589-13613 (2011).
  7. Ahmed, M. J., Theydan, S. K. Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chemical Engineering Journal. 211 (22), 200-207 (2012).
  8. Liew, R. K., et al. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates. , 1-17 (2018).
  9. Lam, S. S., et al. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production. 162, 1376-1387 (2017).
  10. Jin, H., Wang, X., Gu, Z., Polin, J. Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources. 236, 285-292 (2013).
  11. Chen, H. Research Methods for the Biotechnology of Lignocellulose. Biotechnology of Lignocellulose: Theory and Practice. , 403-510 (2014).
  12. Sayğılı, H., Güzel, F. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production. 113, 995-1004 (2016).
  13. Cao, Q., Xie, K. C., Lv, Y. K., Bao, W. R. Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology. 97 (1), 110-115 (2006).
  14. Xiao, X., et al. Adsorption behavior of phenanthrene onto coal-based activated carbon prepared by microwave activation. Korean Journal of Chemical Engineering. 32 (6), 1129-1136 (2015).
  15. Ge, X., et al. Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: Microwave power effects. Chemical Engineering & Processing Process Intensification. 91, 67-77 (2015).
  16. Yao, S., et al. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of Colloid and Interface Science. 463, 118-127 (2016).
  17. Ali, A., Idris, R. Utilization Of Low-cost Activated Carbon From Rapid Synthesis Of Microwave Pyrolysis For WC Nanoparticles Preparation. Advanced Materials Letters. 08 (1), 70-76 (2016).
  18. Puchana-Rosero, M. J., et al. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 504, 105-115 (2016).
  19. Du, Z. L., Zheng, T., Wang, P., Hao, L. L., Wang, Y. X. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresource Technology. 201, 41-49 (2016).
  20. Ge, X., et al. Microwave-assisted modification of activated carbon with ammonia for efficient pyrene adsorption. Journal of Industrial & Engineering Chemistry. 39, 27-36 (2016).
  21. Ghaedi, M., et al. Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal. 268, 28-37 (2015).
  22. Gupta, V. K., Nayak, A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal. 180 (3), 81-90 (2012).
  23. Robati, D., et al. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal. 284 (7), 687-697 (2016).
  24. Ali, I., Alothman, Z. A., Sanagi, M. M. Green Synthesis of Iron Nano-Impregnated Adsorbent for Fast Removal of Fluoride from Water. Journal of Molecular Liquids. 211, 457-465 (2015).
  25. Gupta, V. K., Kumar, R., Nayak, A., Saleh, T. A., Barakat, M. A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid & Interface Science. 193 (6), 24 (2013).
  26. Mittal, A., Mittal, J., Malviya, A., Gupta, V. K. Adsorptive removal of hazardous anionic dye "Congo red" from wastewater using waste materials and recovery by desorption. Journal of Colloid and Interface Science. 340 (1), 16-26 (2009).
  27. Wan, Z., Li, K. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption. Chemosphere. 194, 370-380 (2018).
  28. Li, K., Li, J., Lu, M., Li, H., Wang, X. Preparation and amino modification of mesoporous carbon from bagasse via microwave activation and ethylenediamine polymerization for Pb(II) adsorption. Desalination and Water Treatment. 57 (50), 24004-24018 (2016).
  29. Yantasee, W., et al. Electrophilic Aromatic Substitutions of Amine and Sulfonate onto Fine-Grained Activated Carbon for Aqueous-Phase Metal Ion Removal. Separation Science and Technology. 39 (14), 3263-3279 (2004).
  30. Li, Y. B., Li, K. Q., Wang, X. H., Li, J. Ethylenediamine Modification of Hierarchical Mesoporous Carbon for the Effective Removal of Pb (II) and Related Influencing Factors. International Journal of Material Science. 6 (1), 58-65 (2016).
  31. Georgakopoulos, E., Santos, R. M., Chiang, Y. W., Manovic, V. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent. Journal of Visualized Experiments. (120), e55062 (2017).
  32. Loganathan, P., et al. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. Environmental Science & Pollution Research. (15), 1-12 (2018).
  33. Vunain, E., Kenneth, D., Biswick, T. Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: equilibrium and kinetics studies. Applied Water Science. 7 (8), 4301-4319 (2017).
  34. Bohli, T., Ouederni, A., Villaescusa, I. Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions. Euro-Mediterranean Journal for Environmental Integration. 2 (1), 19 (2017).
  35. Bouhamed, F., Elouear, Z., Bouzid, J., Ouddane, B. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environmental Science & Pollution Research. 23 (16), 1-6 (2016).
  36. Wu, L., et al. Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Separation & Purification Technology. 197, (2018).
check_url/58161?article_type=t

Play Video

Cite This Article
Li, K., Wan, Z. Preparation of Biomass-based Mesoporous Carbon with Higher Nitrogen-/Oxygen-chelating Adsorption for Cu(II) Through Microwave Pre-Pyrolysis. J. Vis. Exp. (144), e58161, doi:10.3791/58161 (2019).

View Video