Summary

利用微阵列研究微环境对癌症细胞表型的影响

Published: May 21, 2019
doi:

Summary

这里介绍的方法的目的是展示如何制造微环境微阵列 (MEMA) 并用于询问数千种简单组合微环境对培养细胞表型的影响。

Abstract

由于可溶性生长因子和基质相关蛋白在体内微环境中的混合混合,理解微环境对细胞表型的影响是一个难题。此外,用于体外微环境建模的现成试剂通常利用未完全定义的蛋白质的复杂混合物,并遭受批次到批次的变异。微环境微阵列 (MEMA) 平台允许评估数千种微环境蛋白的简单组合,以在单个测定中评估其对细胞表型的影响。MEMEA在井板中制备,允许添加单独的配体来分离含有阵列细胞外基质(ECM)蛋白质的孔。可溶性配体与每个印刷的 ECM 的组合形成了独特的组合。典型的 MEMA 测定包含超过 2,500 个独特的组合微环境,细胞在单个检测中暴露。作为测试案例,乳腺癌细胞系MCF7被镀在MEMA平台上。分析这种测定确定了增强和抑制这些细胞的生长和增殖的因素。MEMA 平台非常灵活,可扩展用于癌症研究以外的其他生物学问题。

Introduction

在二维(2D)单层塑料上培养癌细胞系仍然是癌症研究人员的主要工作之一。然而,微环境因其影响细胞表型的能力而日益得到认可。在癌症中,肿瘤微环境已知影响多种细胞行为,包括生长、存活、入侵和对治疗1、2的反应。传统的单层细胞培养通常缺乏微环境影响,这导致开发更复杂的三维(3D)检测来生长细胞,包括市售的纯化基底膜提取物。然而,这些纯化的基质通常使用复杂,并遭受技术问题,如批次变异性3和复杂组合物3。因此,很难将功能分配给可能影响细胞表型3的特定蛋白质。

为了弥补这些限制,我们开发了微环境微阵列 (MEMA) 技术,该技术将微环境简化为细胞外基质 (ECM) 和可溶性生长因子蛋白4、5 的简单组合.MEMA 平台能够识别影响细胞行为的显性微环境因素。通过使用数组格式,可以在单个实验中测定数千个微环境因子的组合。此处描述的 MEMA 询问了 2,500 种不同的独特微环境条件。印在井板的ECM蛋白形成生长垫,细胞可以赖以培养。可溶性配体被添加到单个孔中,在细胞暴露的每个不同点上创建独特的组合微环境(ECM + 配体)。细胞被培养数天,然后固定,染色和图像,以评估细胞表型作为暴露于这些特定的微环境组合的结果。由于微环境是简单的组合,因此很容易识别驱动细胞中主要型型变化的蛋白质。MEMEA已经成功地用于识别影响多细胞表型的因素,包括那些驱动细胞命运决定和对治疗4、5、6、7的反应的因素。这些反应可以在简单的2D实验中验证,然后可以在更全面地概括肿瘤微环境复杂性的条件下进行评估。MEMA 平台高度适应各种细胞类型和端点,前提是提供良好的型型生物标志物。

Protocol

注:图 1所示的流程图概述了整个 MEMA 流程(包括估计时间) 。该协议详细介绍了 8 孔板中 MEMEA 的制造。该协议可适用于其他板或幻灯片。 1. 蛋白质、稀释剂和染色缓冲液的制备 将 EMS、配体和细胞因子小瓶与室温 (RT) 和短暂离心器进行平衡。如产品数据表所示,添加适当的 RT 缓冲区的适当体积。按照制造商关于库存集中的建议进行操作…

Representative Results

为了简化微环境对细胞生长和增殖的影响,并确定促进或抑制细胞生长和增殖的条件,乳腺癌细胞系MCF7被播种在协议中描述的一组8 8孔MEMA上。这种测定使细胞接触48种不同的EMS和57种不同的配体,共2736个组合微环境条件。在培养71小时后,用EdU脉冲细胞,固定,渗透,并沾染DAPI,EdU检测反应,抗纤维蛋白抗体,抗H3K9me3抗体。细胞在高含量显微镜上成像。图像被上传到一个Omero服务器10,分段使?…

Discussion

“维数”和语境的重要性一直是体外培养系统发展的动力,通过它们与微环境的相互作用,以及体外细胞的能力,作为癌细胞表征的工具。模仿体内环境的文化系统是寻求改善这些文化系统的动力。然而,体外系统仍然是癌症研究的重要工具,正是因为它们能够将复杂的体内情况提炼为简化的12型。

虽然 2D 系统可以包括 EVM 和配体,但它们传统上缺乏?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH网络蜂窝签名共同基金图书馆(LINCS)赠款HG008100(J.W.G.、L.M.H.和J.E.K)的支持。

Materials

Aushon 2470 Aushon BioSystems Arrayer robot system used in the protocol
Nikon HCA Nikon High Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope
BioTek Precision XS liquid Handler BioTek liquid handling robot used in the protocol
Trizma hydrochloride buffer solution Sigma T2069
EDTA Invitrogen 15575-038
Glycerol Sigma G5516
Triton X100 Sigma T9284
Tween 20 Sigma P7949
Kolliphor P338 BASF 50424591
384-well microarray plate, cylindrical well Thermo Fisher ab1055
Nunc 8 well dish Thermo Fisher 267062
Paraformaldehyde 16% solution Electron Microscopy Science 15710
BSA Fisher BP-1600
Sodium Azide Sigma S2002
Cell Mask Molecular Probes H32713
Click-iTEdU Alexa Fluor Molecular Probes C10357
DAPI Promo Kine PK-CA70740043
ALCAM R & D Systems 656-AL ECM
Cadherin-20 (CDH20) R & D Systems 5604-CA ECM
Cadherin-6 (CDH6) R & D Systems 2715-CA ECM
Cadherin-8 (CDH8) R & D Systems 188-C8 ECM
CD44 R & D Systems 3660-CD ECM
CEACAM6 R & D Systems 3934-CM ECM
Collagen I Cultrex 3442-050-01 ECM
Collagen Type II Millipore CC052 ECM
Collagen Type III Millipore CC054 ECM
Collagen Type IV Sigma C5533 ECM
Collagen Type V Millipore CC077 ECM
COL23A1 R & D Systems 4165-CL ECM
Desmoglein 2 R & D Systems 947-DM ECM
E-cadherin (CDH1) R & D Systems 648-EC ECM
ECM1 R & D Systems 3937-EC ECM
Fibronectin R & D Systems 1918-FN ECM
GAP43 Abcam ab114188 ECM
HyA-500K R & D Systems GLR002 ECM
HyA-50K R & D Systems GLR001 ECM
ICAM-1 R & D Systems 720-IC ECM
Laminin Sigma L6274 ECM
Laminin-5 Abcam ab42326 ECM
Lumican R & D Systems 2846-LU ECM
M-Cad (CDH15) R & D Systems 4096-MC ECM
Nidogen-1 R & D Systems 2570-ND ECM
Osteoadherin/OSAD R & D Systems 2884-AD ECM
Osteopontin (SPP) R & D Systems 1433-OP ECM
P-Cadherin (CDH3) R & D Systems 861-PC ECM
PECAM1 R & D Systems ADP6 ECM
Tenascin C R & D Systems 3358-TC ECM
VCAM1 R & D Systems ADP5 ECM
vitronectin R & D Systems 2308-VN ECM
Biglycan R & D Systems 2667-CM ECM
Decorin R & D Systems 143-DE ECM
Periostin R & D Systems 3548-F2 ECM
SPARC/osteonectin R & D Systems 941-SP ECM
Thrombospondin-1/2 R & D Systems 3074-TH ECM
Brevican R & D Systems 4009-BC ECM
Elastin BioMatrix 5052 ECM
Fibrillin Lynn Sakai Lab OHSU N/A ECM
ANGPT2 RnD_Systems_Own 623-AN-025 Ligand
IL1B RnD_Systems_Own 201-LB-005 Ligand
CXCL8 RnD_Systems_Own 208-IL-010 Ligand
IGF1 RnD_Systems_Own 291-G1-200 Ligand
TNFRSF11B RnD_Systems_Own 185-OS Ligand
BMP6 RnD_Systems_Own 507-BP-020 Ligand
FLT3LG RnD_Systems_Own 308-FK-005 Ligand
CXCL1 RnD_Systems_Own 275-GR-010 Ligand
DLL4 RnD_Systems_Own 1506-D4-050 Ligand
HGF RnD_Systems_Own 294-HGN-005 Ligand
Wnt5a RnD_Systems_Own 645-WN-010 Ligand
CTGF Life_Technologies_Own PHG0286 Ligand
LEP RnD_Systems_Own 398-LP-01M Ligand
FGF2 Sigma_Aldrich_Own SRP4037-50UG Ligand
FGF6 RnD_Systems_Own 238-F6 Ligand
IL7 RnD_Systems_Own 207-IL-005 Ligand
TGFB1 RnD_Systems_Own 246-LP-025 Ligand
PDGFB RnD_Systems_Own 220-BB-010 Ligand
WNT10A Genemed_Own 90009 Ligand
PTN RnD_Systems_Own 252-PL-050 Ligand
BMP3 RnD_Systems_Own 113-BP-100 Ligand
BMP4 RnD_Systems_Own 314-BP-010 Ligand
TNFSF11 RnD_Systems_Own 390-TN-010 Ligand
CSF2 RnD_Systems_Own 215-GM-010 Ligand
BMP5 RnD_Systems_Own 615-BMC-020 Ligand
DLL1 RnD_Systems_Own 1818-DL-050 Ligand
NRG1 RnD_Systems_Own 296-HR-050 Ligand
KNG1 RnD_Systems_Own 1569-PI-010 Ligand
GPNMB RnD_Systems_Own 2550-AC-050 Ligand
CXCL12 RnD_Systems_Own 350-NS-010 Ligand
IL15 RnD_Systems_Own 247-ILB-005 Ligand
TNF RnD_Systems_Own 210-TA-020 Ligand
IGFBP3 RnD_Systems_Own 675-B3-025 Ligand
WNT3A RnD_Systems_Own 5036-WNP-010 Ligand
PDGFAB RnD_Systems_Own 222-AB Ligand
AREG RnD_Systems_Own 262-AR-100 Ligand
JAG1 RnD_Systems_Own 1277-JG-050 Ligand
BMP7 RnD_Systems_Own 354-BP-010 Ligand
TGFB2 RnD_Systems_Own 302-B2-010 Ligand
VEGFA RnD_Systems_Own 293-VE-010 Ligand
IL6 RnD_Systems_Own 206-IL-010 Ligand
CXCL12 RnD_Systems_Own 351-FS-010 Ligand
NRG1 RnD_Systems_Own 378-SM Ligand
IGFBP2 RnD_Systems_Own 674-B2-025 Ligand
SHH RnD_Systems_Own 1314-SH-025 Ligand
FASLG RnD_Systems_Own 126-FL-010 Ligand

References

  1. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  2. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  3. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  4. LaBarge, M. A., et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (Cambridge). 1 (1), 70-79 (2009).
  5. Watson, S. S., et al. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Systems. 6 (3), 329-342 (2018).
  6. Ranga, A., et al. 3D niche microarrays for systems-level analyses of cell fate. Nature Communications. 5, 4324 (2014).
  7. Malta, D. F. B., et al. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater. 34, 30-40 (2016).
  8. Kamentsky, L., et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 27 (8), 1179-1180 (2011).
  9. Gagnon-Bartsch, J. A., Jacob, L., Speed, T. P. Removing Unwanted Variation from High Dimensional Data with Negative Controls. University of California, Berkeley, Department of Statistics, University of California, Berkeley. , (2013).
  10. Allan, C., et al. OMERO: flexible, model-driven data management for experimental biology. Nature Methods. 9 (3), 245-253 (2012).
  11. Simian, M., Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. 216 (1), 31-40 (2017).
  12. Bissell, M. J. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. International Review of Cytology. 70, 27-100 (1981).
  13. Serban, M. A., Prestwich, G. D. Modular extracellular matrices: solutions for the puzzle. Methods. 45 (1), 93-98 (2008).
  14. Kaylan, K. B., et al. Mapping lung tumor cell drug responses as a function of matrix context and genotype using cell microarrays. Integrative Biology (Cambridge). 8 (12), 1221-1231 (2016).
  15. Lin, C. H., Jokela, T., Gray, J., LaBarge, M. A. Combinatorial Microenvironments Impose a Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound. Cell Reports. 21 (2), 533-545 (2017).
  16. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).
check_url/58957?article_type=t

Play Video

Cite This Article
Smith, R., Devlin, K., Kilburn, D., Gross, S., Sudar, D., Bucher, E., Nederlof, M., Dane, M., Gray, J. W., Heiser, L., Korkola, J. E. Using Microarrays to Interrogate Microenvironmental Impact on Cellular Phenotypes in Cancer. J. Vis. Exp. (147), e58957, doi:10.3791/58957 (2019).

View Video