Summary

Induction de choc hémorragique normalisée guidée par l'oxymétrie cérébrale et la surveillance hémodynamique prolongée chez les porcs

Published: May 21, 2019
doi:

Summary

Le choc hémorragique est une complication grave dans les patients grièvement blessés, qui mène à l’insuffisance d’oxygène représentant un danger pour la vie. Nous présentons une méthode normalisée pour induire le choc hémorragique par le retrait de sang chez les porcs qui est guidé par l’hémodynamique et l’oxygénation cérébrale microcirculatoire.

Abstract

Le choc hémorragique compte parmi les principales raisons de la mort grave liée aux blessures. La perte de volume circulatoire et de porteurs d’oxygène peut conduire à un approvisionnement insuffisant en oxygène et à une défaillance irréversible des organes. Le cerveau n’exerce que des capacités d’indemnisation limitées et est particulièrement à haut risque de dommages hypoxiques graves. Cet article démontre l’induction reproductible du choc hémorragique représentant un danger pour la vie dans un modèle porcin au moyen du retrait sanguin calculé. Nous attifions l’induction de choc guidée par la spectroscopie proche infrarouge et la surveillance hémodynamique prolongée pour montrer l’échec circulatoire systémique, aussi bien que l’épuisement microcirculatoire cérébral d’oxygène. Par rapport à des modèles similaires qui se concentrent principalement sur les volumes d’élimination prédéfinis pour l’induction du choc, cette approche met en évidence une titration au moyen de l’échec résultant de la macro- et la microcirculation.

Introduction

La perte de sang massive est l’une des principales causes de décès liés aux blessures1,2,3. La perte de liquide circulatoire et de porteurs d’oxygène conduit à une défaillance hémodynamique et à une grave sous-alimentation en oxygène et peut causer une défaillance irréversible des organes et la mort. Le niveau de gravité du choc est influencé par d’autres facteurs comme l’hypothermie, la coagulopathie et l’acidose4. Particulièrement le cerveau, mais aussi les reins manquent de capacité de compensation en raison de la forte demande d’oxygène et de l’incapacité de la production d’énergie anaérobie adéquate5,6. À des fins thérapeutiques, une action rapide et immédiate est essentielle. Dans la pratique clinique, la réanimation liquide avec une solution équilibrée d’électrolyte est la première option pour le traitement, suivie par l’administration des concentrés de globules rouges et du plasma congelé frais. Les concentrés de Thrombocyte, les catécholamines, et l’optimisation de la coagulation et du statut acide-base soutiennent la thérapie pour regagner des conditions physiologiques normales après trauma soutenu. Ce concept se concentre sur la restauration de l’hémodynamique et de la macrocirculation. Plusieurs études, cependant, montrent que la perfusion microcirculatoire ne se rétablit pas simultanément avec la macrocirculation. Particulièrement, la perfusion cérébrale reste altérée et davantage de sous-approvisionnement en oxygène peut se produire7,8.

L’utilisation de modèles animaux permet aux scientifiques d’établir des stratégies nouvelles ou expérimentales. L’anatomie, l’homologie et la physiologie comparables des porcs et des humains permettent de tirer des conclusions sur des facteurs pathologiques spécifiques. Les deux espèces ont un système métabolique similaire et la réponse aux traitements pharmacologiques. C’est un grand avantage par rapport aux modèles de petits animaux où les différences dans le volume sanguin, l’hémodynamique, et la physiologie globale font qu’il est presque impossible d’imiter un scénario clinique9. En outre, l’équipement médical et les consommables autorisés peuvent être facilement utilisés dans les modèles porcins. En outre, il est facilement possible d’obtenir des porcs auprès de fournisseurs commerciaux, ce qui permet une grande diversité de la génétique et des phénotypes et est la réduction des coûts10. Le modèle de sevrage sanguin par l’intermédiaire du vaisseau cannulation est assez commun11,12,13,14,15.

Dans cette étude, nous prolongeons le concept de l’induction hémorragique de choc par le retrait de sang artériel avec une titration exacte de l’échec hémodynamique et de l’affaiblissement cérébral d’oxygénation. Le choc hémorragique est réalisé si l’index cardiaque et la pression artérielle moyenne tombe en dessous de 40%de la valeur de base, qui a été montrée pour causer la détérioration considérable de la saturation régionale cérébrale d’oxygénation 8. La mesure du rendement cardiaque du contour des impulsions (PiCCO) est utilisée pour la surveillance hémodynamique continue. Tout d’abord, le système doit être calibré par thermodilution transpulmonaire, qui permet le calcul de l’indice cardiaque de la teneur en eau pulmonaire extravasculaire et du volume global de l’extrémité diastolique. Par la suite, l’indice cardiaque continu est calculé par l’analyse du contour de l’impulsion et fournit également des paramètres de précharge dynamiques comme la pression d’impulsion et la variation du volume des accidents vasculaires cérébraux.

Cette technique est bien établie dans les milieux cliniques et expérimentaux. La spectroscopie proche infrarouge (NIRS) est une méthode cliniquement et expérimentalement établie pour surveiller les changements dans l’approvisionnement en oxygène cérébral en temps réel. Des capteurs auto-adhérents sont attachés au front gauche et droit et calculent l’oxygénation cérébrale de façon non invasive dans le cortex frontal cérébral. Deux longueurs d’onde de la lumière infrarouge (700 et 900 nm) sont émises et détectées par les capteurs après avoir été réfléchies par le tissu du cortex. Pour évaluer la teneur en oxygène cérébrale, les contributions du sang artériel et veineux sont calculées dans les relations 1:3 et mises à jour dans 5 intervalles de s. La sensibilité en profondeur de 1-4 cm est exponentielle décroissante et influencée par le tissu pénétré (par exemple, la peau et l’os), bien que le crâne soit translucide à la lumière infrarouge. La technique facilite des actions thérapeutiques rapides pour empêcher des patients des résultats défavorables comme le délire ou les dommages cérébraux hypoxiques et sert de paramètre cible en cas de sortie cardiaque altérée16,17. La combinaison des deux techniques pendant le choc expérimental permet une titration exacte de la macrocirculation, aussi bien que l’affaiblissement microcirculatoire cérébral, pour étudier cet événement représentant un danger pour la vie.

Protocol

Les expériences de ce protocole ont été approuvées par le Comité d’État et de soins aux animaux institutionnels (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Allemagne; Présidente: Dre Silvia Eisch-Wolf; numéro de référence: 23 177-07/G 14-1-084; 02.02.2015). Les expériences ont été menées conformément aux lignes directrices sur les rapports de recherche sur les animaux des expériences in vivo (ARRIVE). L’étude a été planifiée et menée entre novembre 2015 et mars 2016. Après une recherche docume…

Representative Results

Après le début de l’induction du choc, un court délai d’indemnisation peut être enregistré. Avec l’ablation continue du sang, la décompensation cardio-circulatoire susmentionnée, surveillée par une diminution significative de CRSO2, l’indice cardiaque, l’indice intrathoracique du volume sanguin, et l’indice global de volume de fin-diastolique (figure2 , Figure 3, et Figure 4), se p…

Discussion

Le protocole décrit une méthode d’induire le choc hémorragique par l’intermédiaire du saignement artériel commandé chez les porcs qui est guidé par l’hémodynamique systémique, aussi bien que par l’affaiblissement microcirculatoire cérébral. Les conditions de choc ont été atteintes par un retrait sanguin calculé de 25-35 mL kg-1 et confirmés par le composite mentionné des paramètres de substitution indiquant l’échec cardio-circulatoire considérable. Si elle n’est pas traitée, cette procédur…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs veulent remercier Dagmar Dirvonskis pour son excellent soutien technique.

Materials

3-way-stopcock blue Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394602 Drug administration
3-way-stopcock red Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394605 Drug administration/Shock induction
Atracurium Hikma Pharma GmbH , Martinsried AM03AC04* Anesthesia
Canula 20 G Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 301300 Vascular access
Datex Ohmeda S5 GE Healthcare Finland Oy, Helsinki, Finland Hemodynamic monitor
Desinfection  Schülke & Mayr GmbH, Germany 104802 Desinfection 
Heidelberger Verlängerung 75CM Fresenius Kabi Deutschland GmbH 2873112   Drug administration/Shock induction
INVOS 5100C Cerebral Medtronic PLC, USA Monitore for cerebral regional oxygenation 
INVOS Cerebral/Somatic Oximetry Adult Sensors Medtronic PLC, USA 20884521211152 Monitoring of the cerebral regional oxygenation 
Endotracheal tube Teleflex Medical Sdn. Bhd, Malaysia 112482 Intubation
Endotracheal tube introducer   Wirutec GmbH, Sulzbach, Germany 5033062 Intubation
Engström Carestation GE Heathcare, Madison USA Ventilator
Fentanyl Janssen-Cilag GmbH, Neuss AA0014* Anesthesia
Gloves Paul Hartmann, Heidenheim, Germany 9422131 Self-protection
Incetomat-line 150 cm Fresenius, Kabi GmbH, Bad Homburg, Germany 9004112 Drug administration
Ketamine Hameln Pharmaceuticals GmbH, Zofingen, Schweiz AN01AX03* Sedation
Laryngoscope Teleflex Medical Sdn. Bhd, Malaysia 671067-000020 Intubation
Logical pressure monitoring system Smith- Medical GmbH,  Minneapolis, USA MX9606 Hemodynamic monitor
Logicath 7 Fr 3-lumen 30cm Smith- Medical GmbH,  Minneapolis, USA MXA233x30x70-E Vascular access/Drug administration
Masimo Radical 7 Masimo Corporation, Irvine, USA Hemodynamic monitor
Mask for ventilating dogs Henry Schein, Melville, USA 730-246 Ventilation
Original Perfusor syringe 50ml Luer Lock B.Braun Melsungen AG, Melsungen, Germany 8728810F Drug administration
PICCO Thermodilution. F5/20CM EW  MAQUET Cardiovascular GmbH, Rastatt, Germany PV2015L20-A   Hemodynamic monitor
Percutaneous sheath introducer set 8,5 und 9 Fr, 10 cm with integral haemostasis valve/sideport Arrow international inc., Reading, USA AK-07903 Vascular access/Shock induction
Perfusor FM Braun B.Braun Melsungen AG, Melsungen, Germany 8713820 Drug administration
Potassium chloride Fresenius, Kabi GmbH, Bad Homburg, Germany 6178549 Euthanasia
Propofol 2% Fresenius, Kabi GmbH, Bad Homburg, Germany   AN01AX10* Anesthesia
 Pulse Contour Cardiac Output (PiCCO2 Pulsion Medical Systems, Feldkirchen, Germany Hemodynamic monitor
Sonosite Micromaxx Ultrasoundsystem Fujifilm, Sonosite Bothell, Bothell, USA  Vascular access
Stainless Macintosh Size 4 Teleflex Medical Sdn. Bhd, Perak,  Malaysia 670000 Intubation
Sterofundin B.Braun Melsungen AG, Melsungen, Germany AB05BB01* balanced electrolyte infusion
Stresnil 40mg/ml   Lilly Germany GmbH, Wiesbaden, Germany QN05AD90 Sedation
Syringe 10 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309110 Drug administration
Syringe 2 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300928 Drug administration
Syringe 20 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300296 Drug administration
Syringe 5 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309050 Drug administration
venous catheter 22G B.Braun Melsungen AG, Melsungen, Germany 4269110S-01 Vascular access
*ATC:  Anatomical Therapeutic Chemical / Defined Daily Dose Classification 

References

  1. Kutcher, M. E., et al. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surgery. 148 (9), 834-840 (2013).
  2. Allen, B. S., Ko, Y., Buckberg, G. D., Sakhai, S., Tan, Z. Studies of isolated global brain ischaemia: I. A new large animal model of global brain ischaemia and its baseline perfusion studies. European Journal of Cardio-Thoracic Surgery. 41 (5), 1138-1146 (2012).
  3. Noll, E., et al. Comparative analysis of resuscitation using human serum albumin and crystalloids or 130/0.4 hydroxyethyl starch and crystalloids on skeletal muscle metabolic profile during experimental haemorrhagic shock in swine: A randomised experimental study. European Journal of Anaesthesiology. 34 (2), 89-97 (2017).
  4. Tisherman, S. A., Stein, D. M. ICU Management of Trauma Patients. Critical Care Medicine. , (2018).
  5. Nielsen, T. K., Hvas, C. L., Dobson, G. P., Tonnesen, E., Granfeldt, A. Pulmonary function after hemorrhagic shock and resuscitation in a porcine model. Acta Anaesthesiologica Scandinavica. 58 (8), 1015-1024 (2014).
  6. Bogert, J. N., Harvin, J. A., Cotton, B. A. Damage Control Resuscitation. Journal of Intensive Care Medicine. 31 (3), 177-186 (2016).
  7. Gruartmoner, G., Mesquida, J., Ince, C. Fluid therapy and the hypovolemic microcirculation. Current Opinion in Critical Care. 21 (4), 276-284 (2015).
  8. Ziebart, A., et al. Effect of gelatin-polysuccinat on cerebral oxygenation and microcirculation in a porcine haemorrhagic shock model. Scandinavian Journal Trauma Resuscitation Emergency Medicin. 26 (1), 15 (2018).
  9. Bassols, A., et al. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clinical Applications. 8 (9-10), 715-731 (2014).
  10. Alosh, H., Ramirez, A., Mink, R. The correlation between brain near-infrared spectroscopy and cerebral blood flow in piglets with intracranial hypertension. Journal of Applied Physiology. 121 (1985), 255-260 (2016).
  11. Hartmann, E. K., et al. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation. Acta Anaesthesiologica Scandinavica. 58 (8), 1032-1039 (2014).
  12. Hartmann, E. K., Duenges, B., Baumgardner, J. E., Markstaller, K., David, M. Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Medicine. 39 (7), 1313-1317 (2013).
  13. Hartmann, E. K., et al. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiologica Scandinavica. 57 (3), 334-341 (2013).
  14. Ortiz, A. L., et al. The influence of Ringer’s lactate or HES 130/0.4 administration on the integrity of the small intestinal mucosa in a pig hemorrhagic shock model under general anesthesia. Journal of the Veterinary Emergency and Critical. 27 (1), 96-107 (2017).
  15. Ziebart, A., et al. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. Respiratory Research. 15, 101 (2014).
  16. Hoffman, G. M., et al. Postoperative Cerebral and Somatic Near-Infrared Spectroscopy Saturations and Outcome in Hypoplastic Left Heart Syndrome. The Annals of Thoracic Surgery. 103 (5), 1527-1535 (2017).
  17. Hickok, R. L., Spaeder, M. C., Berger, J. T., Schuette, J. J., Klugman, D. Postoperative Abdominal NIRS Values Predict Low Cardiac Output Syndrome in Neonates. World Journal for Pediatric and Congenital Heart Surgery. 7 (2), 180-184 (2016).
  18. Weiner, M. M., Geldard, P., Mittnacht, A. J. Ultrasound-guided vascular access: a comprehensive review. Journal of Cardiothoracic and Vascular Anesthesia. 27 (2), 345-360 (2013).
  19. Kumar, A., Chuan, A. Ultrasound guided vascular access: efficacy and safety. Best Practice & Research: Clinical Anaesthesiology. 23 (3), 299-311 (2009).
  20. Lamperti, M., et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Medicine. 38 (7), 1105-1117 (2012).
  21. Mayer, J., Suttner, S. Cardiac output derived from arterial pressure waveform. Current Opinion in Anesthesiology. 22 (6), 804-808 (2009).
  22. Medtronic. . Operations Manual INVOS ® System, Model 5100C. , (2013).
  23. Wani, T. M., Rafiq, M., Akhter, N., AlGhamdi, F. S., Tobias, J. D. Upper airway in infants-a computed tomography-based analysis. Paediatric Anaesthesia. 27 (5), 501-505 (2017).
  24. Tuna Katircibasi, M., Gunes, H., Cagri Aykan, A., Aksu, E., Ozgul, S. Comparison of Ultrasound Guidance and Conventional Method for Common Femoral Artery Cannulation: A Prospective Study of 939 Patients. Acta Cardiologica Sinica. 34 (5), 394-398 (2018).
  25. Teeter, W. A., et al. Feasibility of basic transesophageal echocardiography in hemorrhagic shock: potential applications during resuscitative endovascular balloon occlusion of the aorta (REBOA). Cardiovascular Ultrasound. 16 (1), 12 (2018).
  26. Kontouli, Z., et al. Resuscitation with centhaquin and 6% hydroxyethyl starch 130/0.4 improves survival in a swine model of hemorrhagic shock: a randomized experimental study. European Journal of Trauma and Emergency Surgery. , (2018).
  27. Nikolian, V. C., et al. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma. Critical Care Medicine. 46 (1), e59-e66 (2018).
  28. Williams, T. K., et al. Endovascular variable aortic control (EVAC) versus resuscitative endovascular balloon occlusion of the aorta (REBOA) in a swine model of hemorrhage and ischemia reperfusion injury. The Journal of Trauma and Acute Care Surgery. 85 (3), 519-526 (2018).
  29. Aly, S. A., et al. Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenital Heart Disease. 12 (2), 188-195 (2017).
  30. Sorensen, H. Near infrared spectroscopy evaluated cerebral oxygenation during anesthesia. The Danish Medical Journal. 63 (12), (2016).
  31. Cem, A., et al. Efficacy of near-infrared spectrometry for monitoring the cerebral effects of severe dilutional anemia. Heart Surgery Forum. 17 (3), E154-E159 (2014).
  32. Edmonds, H. L., Ganzel, B. L., Austin, E. H. Cerebral oximetry for cardiac and vascular surgery. Seminars in Cardiothoracic and Vascular Anesthesia. 8 (2), 147-166 (2004).
  33. Murkin, J. M., et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesthesia & Analgesia. 104 (1), 51-58 (2007).
  34. Hong, S. W., et al. Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry. European Journal of Cardio-Thoracic Surgery. 33 (4), 560-565 (2008).
  35. Al Tayar, A., Abouelela, A., Mohiuddeen, K. Can the cerebral regional oxygen saturation be a perfusion parameter in shock?. Journal of Critical Care. 38, 164-167 (2017).
  36. Torella, F., Cowley, R. D., Thorniley, M. S., McCollum, C. N. Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?. Shock. 18 (5), 440-444 (2002).
  37. Yao, F. S., Tseng, C. C., Ho, C. Y., Levin, S. K., Illner, P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia. 18 (5), 552-558 (2004).
  38. Slater, J. P., et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. The Annals of Thoracic Surgery. 87 (1), 36-44 (2009).
  39. Brodt, J., Vladinov, G., Castillo-Pedraza, C., Cooper, L., Maratea, E. Changes in cerebral oxygen saturation during transcatheter aortic valve replacement. Journal of Clinical Monitoring and Computing. 30 (5), 649-653 (2016).
  40. Yoshimura, A., et al. Altered cortical brain activity in end stage liver disease assessed by multi-channel near-infrared spectroscopy: Associations with delirium. Scintific Reports. 7 (1), 9258 (2017).
  41. Douds, M. T., Straub, E. J., Kent, A. C., Bistrick, C. H., Sistino, J. J. A systematic review of cerebral oxygenation-monitoring devices in cardiac surgery. Perfusion. 29 (6), 545-552 (2014).
  42. Forman, E., et al. Noninvasive continuous cardiac output and cerebral perfusion monitoring in term infants with neonatal encephalopathy: assessment of feasibility and reliability. Pediatric Research. 82 (5), 789-795 (2017).
  43. Tweddell, J. S., Ghanayem, N. S., Hoffman, G. M. Pro: NIRS is " standard of care " for postoperative management. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual. 13 (1), 44-50 (2010).
  44. Lewis, C., Parulkar, S. D., Bebawy, J., Sherwani, S., Hogue, C. W. Cerebral Neuromonitoring During Cardiac Surgery: A Critical Appraisal With an Emphasis on Near-Infrared Spectroscopy. Journal of Cardiothoracic and Vascular Anesthesia. 32 (5), 2313-2322 (2018).
  45. Thudium, M., Heinze, I., Ellerkmann, R. K., Hilbert, T. Cerebral Function and Perfusion during Cardiopulmonary Bypass: A Plea for a Multimodal Monitoring Approach. Heart Surgery Forum. 2 (1), E028-E035 (2018).
  46. Putzer, G., et al. Monitoring of brain oxygenation during hypothermic CPR – A prospective porcine study. Resuscitation. 104, 1-5 (2016).
  47. Weenink, R. P., et al. Detection of cerebral arterial gas embolism using regional cerebral oxygen saturation, quantitative electroencephalography, and brain oxygen tension in the swine. Journal of Neuroscience Methods. 228, 79-85 (2014).
  48. Mader, M. M., et al. Evaluation of a New Multiparameter Brain Probe for Simultaneous Measurement of Brain Tissue Oxygenation, Cerebral Blood Flow, Intracranial Pressure, and Brain Temperature in a Porcine Model. Neurocritical Care. , (2018).
  49. Mikkelsen, M. L. G., et al. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets. Acta Veterinaria Scandinavica. 60 (1), 8 (2018).
  50. Nelskyla, A., et al. The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest. Resuscitation. 116, 1-7 (2017).
  51. Klein, K. U., et al. Intraoperative monitoring of cerebral microcirculation and oxygenation–a feasibility study using a novel photo-spectrometric laser-Doppler flowmetry. European Journal of Trauma and Emergency Surgery. 22 (1), 38-45 (2010).
  52. Ziebart, A., et al. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs. Anaesthesia. 70 (10), 1171-1179 (2015).
  53. Reisz, J. A., et al. All animals are equal but some animals are more equal than others: Plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. The Journal of Trauma and Acute. 84 (3), 537-541 (2018).
  54. Smith, D. M., Newhouse, M., Naziruddin, B., Kresie, L. Blood groups and transfusions in pigs. Xenotransplantation. 13 (3), 186-194 (2006).
  55. Boysen, S. R., Caulkett, N. A., Brookfield, C. E., Warren, A., Pang, J. M. Splenectomy Versus Sham Splenectomy in a Swine Model of Controlled Hemorrhagic. Shock. 46 (4), 439-446 (2016).
  56. Wade, C. E., Hannon, J. P. Confounding factors in the hemorrhage of conscious swine: a retrospective study of physical restraint, splenectomy, and hyperthermia. Circulatory Shock. 24 (3), 175-182 (1988).
check_url/59332?article_type=t

Play Video

Cite This Article
Ziebart, A., Kamuf, J., Ruemmler, R., Rissel, R., Gosling, M., Garcia-Bardon, A., Hartmann, E. K. Standardized Hemorrhagic Shock Induction Guided by Cerebral Oximetry and Extended Hemodynamic Monitoring in Pigs. J. Vis. Exp. (147), e59332, doi:10.3791/59332 (2019).

View Video