Summary

Gratis Carbenes, hun gemengde Dimeren en organische radicalen isoleren

Published: April 19, 2019
doi:

Summary

We presenteren de protocollen voor de isolatie van stabiele heterocyclische carbenen. De synthese van een cyclische (alkyl)(amino) carbeen (CAAC) en een N-heterocyclische carbeen (NHC) wordt aangetoond door middel van de filter cannulas en Schlenk techniek. Bovendien presenteren we de synthese van de verwante zuurstof-gevoelige, elektron-rijke gemengd “Wanzlick dimeer” en het verminderde stabiele organische radicaal.

Abstract

Protocollen voor de isolatie van het algemeen werknemer cyclische (alkyl)(amino) carbeen (CAAC) en N-heterocyclische carbeen (NHC) worden gemeld. Bovendien, de synthese van hun gemengde CAAC – NHC “Wanzlick” dimeer en de synthese van verwante stabiele organische “alkeengassen” radicaal worden gepresenteerd. Het hoofddoel van dit manuscript is om een gedetailleerde en algemeen protocol voor de synthetische scheikundige van elk niveau over hoe te bereiden gratis heterocyclische carbenes door deprotonering met behulp van de filter cannulas. Als gevolg van de lucht-gevoeligheid van de gesynthetiseerde stoffen, worden alle experimenten uitgevoerd onder inerte atmosfeer met Schlenk techniek of een dinitrogen gevuld ‘ glovebox ‘. Beheersing van de Wanzlick van evenwicht (dat wil zeggen, de dimerisatie van gratis carbenes), is een cruciale eis voor de toepassing van gratis carbenes in coördinatiechemie of organische synthese. Dus, we ingaan op de specifieke elektronische en sterische eisen ten gunste van de vorming van Dimeren, heterodimers of monomeren. We zullen laten zien hoe proton katalyse voorziet in de vorming van Dimeren, en de invloed van de elektronische structuur van carbenen en hun Dimeren op de reactiviteit met vocht of lucht. De structurele identiteit van de gemelde stoffen wordt besproken op basis van hun NMR-spectra.

Introduction

Meer dan een halve eeuw geleden, Wanzlick gemeld betwistbaar de eerste pogingen om het synthetiseren van N-heterocyclische carbenes1,2,3. Echter, in plaats van het isoleren van de gratis carbenes, slaagde hij erin alleen karakteriseren van hun Dimeren. Deze observatie gevraagd hem te suggereren een evenwicht tussen de olefine dimeer en de respectieve gratis carbenen, die is nu bekend als “Wanzlick van equilibrium” (Figuur 1, ik.) 4 , 5 , 6. later werd aangevoerd dat de dimerisatie van gratis carbenes en natuurlijk even de omgekeerde reactie (dat wil zeggen, de dissociatie van het verwante olefine Dimeren), wordt gekatalyseerd door protonen7,8,9 ,10,11,12. Het duurde nog eens 30 jaar tot de eerste “bottleable” carbene, die niet bij kamertemperatuur deed dimerize, werd gemeld door Bertrand13,14. Met name N-heterocyclische carbenes (NHCs; imidazolin-2-ylidenes) werd het onderwerp van intensief onderzoek na Arduengo hadden een stabiele kristallijne NHC, 1,3-diadamantyl-imidazolin-2-ylidene15gemeld. De verrassende stabiliteit van dit carbeen was eerste gerationaliseerd door een combinatie van sterische effecten als gevolg van de omvangrijke adamantyl substituenten evenals elektronische effecten geassocieerd met de aromatische N– heterocycle. Echter men toonde later in een elegante studie van Murphy die zelfs “monomeer” 1,3-dimethyl-imidazolin-2-ylidene-16 (dat wil zeggen, de gratis carbeen afgeleid van N,N– dimethylimidazolium zouten) met methyl-zeer kleine substituenten is stabieler dan zijn dimeer17. Lavallo en Bertrand toonden integendeel, dat ook de verwijdering van een stabiliserende stikstofatoom, zoals gerapporteerd door de isolatie van een cyclische (alkyl)(amino) carbeen (CAAC), kunnen worden gecompenseerd door introductie van een omvangrijk 2,6-diisopropylphenyl (Dipp) substituent 18.

NHCs en CAACs bewezen buitengewoon vruchtbare voor de Coördinatiechemie van de d – en p-blok elementen, overgangsmetalen katalyse of organocatalysis (voor thematische kwesties en boeken over NHCs, Zie19,20,21 , 22 , 23, voor recensies over CAACs, Zie24,25,26,27,28, voor de synthese van CAACs, Zie18,29, 30 , 31). het indrukwekkend succesverhaal van cyclische carbeen liganden is voornamelijk het gevolg van twee redenen32. Eerst, zowel sterische als elektronische eigenschappen kunnen gemakkelijk worden afgestemd om te voldoen aan de vereisten van een specifieke toepassing. Ten tweede, het isolement van stabiele gratis carbenes biedt een handige methode om te synthetiseren metaalcomplexen door eenvoudige combinatie met een metalen voorloper. Bijgevolg is het belangrijk om te begrijpen van de factoren die bepalen of een gratis carbeen is stabiel op of onder kamertemperatuur of of het dimerizes om te vormen van een olefine. Opmerking dat de afgeleide elektron rijke olefinen meestal33 vormen geen complexen op een behandeling met een metalen voorloper, die op zijn minst gedeeltelijk vanwege hun sterk reducerend karakter.

Niet alleen zijn gratis carbenes hoofdrolspelers in de synthetische chemie tegenwoordig. In feite, hun elektron rijke olefine Dimeren34,35,,36 (bijvoorbeeld tetraazafulvalenes in het geval van NHCs37 of tetrathiafulvalenes TTF38,39,40 in geval van 1,3-dithiol-2-ylidenes; Figuur 1, II), hebben niet alleen gevonden brede toepassing als reductants41,42,43, maar nog meer in organische elektronica.

TTF is in feite de “brick-and-mortar” organische elektronica44genoemd. Dit is grotendeels te wijten aan de bijzondere elektronische eigenschappen van elektron rijke olefinen – met name, veel van die statussen stabiele redox op oxidatie, met inbegrip van de open-shell organische radicale Toon (voor recensies over carbeen organische radicalen afgeleide, zie:45 ,46,47, voor recente bijdragen op het gebied van carbeen gestabiliseerde organische radicalen, zie:48,49,50,51,52 , 53 , 54). bijgevolg TTF zorgt voor de fabricage van geleidende/semiconductive materiaal zoals vereist voor magnetische materialen, biologische veld – effect transistors (OFETs), organische light emitting diodes (OLED) en moleculaire schakelaars of sensoren 55,56,,57,58,59.

Hierin presenteren wij handige protocollen voor de isolatie van twee stabiele carbenen met enorme impact in coördinatiechemie en homogene katalyse (Figuur 2), namelijk de cyclische (alkyl)(amino) carbeen 1 18, en de dimethylimidazolin-2-ylidene NHC 2 15. We zullen bespreken waarom beide carbenes stabiel bij kamertemperatuur en doen niet dimerize. Wij zal vervolgens ingaan op proton katalyse gerelateerd aan Wanzlick van evenwicht en de vorming van de gemengde CAAC – NHC heterodimer 360,61,62. De spannende elektronische eigenschappen van dergelijke triaza-alkenen is verbonden met de indrukwekkende stabiliteit van de verwante organische radicale 4 63.

Methodologische focus ligt op het Schlenk-techniek met behulp van de filter cannulas uitgerust met een glas microvezel filter voor de scheiding van een supernatant van een neerslag onder inert voorwaarden. Een dinitrogen gevuld ‘ glovebox ‘ wordt gebruikt voor het wegen in het starten van materiaal en de opslag van gevoelige stoffen van de lucht.

Protocol

Let op: Verrichten alle syntheses in een goed geventileerde zuurkast. Draag passende persoonlijke-beschermingsmiddelen (PBM) waaronder een laboratoriumjas en veiligheid bril. Opmerking: De grondstoffen waren gesynthetiseerd volgens de literatuur: 1-(2,6-diisopropylphenyl)-2,2,4,4-tetramethyl-3,4-dihydro-2H- pyrrol-1-ium Zilvertetrafluorboraat (1prot) (voor de synthese van CAACs, zie:18 ,30,</s…

Representative Results

Gratis carbenes reageren meestal gemakkelijk met water66. Vandaar, zorgvuldig gedroogd glaswerk en oplosmiddelen zijn vereiste67. In de hierboven beschreven procedure, gebruikten we cannulas voorzien van een glazen microvezel filter om te scheiden van lucht gevoelige oplossingen van een neerslag onder inert voorwaarden. We gebruikten deze techniek voor zowel de winning van vaste stoffen (dat wil zeggen, het gewenste product is opgelost) en h…

Discussion

Hierin presenteren wij een algemene en flexibele protocol voor de synthese van stabiele carbenen (NHC, CAAC) en hun rijke dimeer van elektron. Alle stappen kunnen gemakkelijk worden opgeschaalde op de schaal van minimaal 25 g. Cruciaal voor een succesvolle synthese zijn de strenge uitsluitingen van vocht (lucht, respectievelijk) voor de synthese van de carbenes, en zuurstof (lucht, respectievelijk) voor de rijke olefine van elektron. De hierin toegepaste filtratie canule techniek in combinatie met een Schlenk-lijn is een…

Disclosures

The authors have nothing to disclose.

Acknowledgements

De auteurs bedanken het Fonds der Chemischen Industrie voor een Liebig fellowship en de Hertha en Helmut Schmauser Stichting voor financiële steun. Ondersteuning door K. Meyer wordt dankbaar erkend.

Materials

Equipment
Glass micro fiber filter, 691, 24 mm. Particle retention 1.6 mm VWR 516-0859
magnetic stir bar FengTecEx various
PTFE tape Sigma-Aldrich Z148814-1PAK PTFE tape used in this manuscript was obtained from a local supplier. Tape from Sigma Aldrich should show comparable performance.
rubber septum FengTecEx RS112440 Joint size: 24/29
rubber septum FengTecEx RS111420 Joint size: 14/23
rubber septum FengTecEx RS111922 Joint size: 19/26
schlenk flasks FengTecEx various 100 mL
steel cannula FengtecEx C702024 Attachment of a steel joint by a machine shop not required, but facilitates preparation of filter cannula
syringe cannula FengtecEx S380221
Name Company Catalog Number Comments
Reactants
1-(2,6-diisopropylphenyl)-2,2,4,4-tetramethyl-3,4-dihydro-2H-pyrrol-1-ium tetrafluoroborate Synthesized according to: Jazzar, R., Dewhurst, R. D., Bourg, J. B., Donnadieu, B., Canac, Y., Bertrand, G. Intramolecular “Hydroiminiumation” of alkenes: Application to the synthesis of conjugate acids of cyclic alkyl amino carbenes (CAACs). Angewandte Chemie International Edition 46 (16), 2899-2902, (2007).
1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium iodide Synthesized according to: Benac, B. L., Burgess, E. M., Arduengo, A. J. 1,3-Dimethylimidazole-2-Thione. Organic Synthesis 64, 92, (1986).
potassium hexamethyldisilazide Sigma-Aldrich 324671-100G CAS 40949-94-8
silver trifluoromethanesulfonate Sigma-Aldrich 85325-25G CAS 2923-28-6
Name Company Catalog Number Comments
Solvents
acetonitrile-D3 Deutero 00202-10m distilled from CaH2, stored over activated molecular sieves
benzene-D6 Deutero 00303-100ml dried over activated molecular sieves, stored over potassium
diethylether dried by two-column, solid-state purification system and degassed by three freeze-pump-thaw cycles, stored over activated molecular sieves
hexanes dried by two-column, solid-state purification system and degassed by three freeze-pump-thaw cycles, stored over activated molecular sieves
tetrahydrofuran dried by two-column, solid-state purification system and degassed by three freeze-pump-thaw cycles, stored over activated molecular sieves
toluene dried by two-column, solid-state purification system and degassed by three freeze-pump-thaw cycles, stored over activated molecular sieves

References

  1. Wanzlick, H. W., Schikora, E. Ein neuer Zugang zur Carben-Chemie. Angewandte Chemie. 72, 494 (1960).
  2. Wanzlick, H. W., Kleiner, H. J. Nucleophile Carben-Chemie. Angewandte Chemie International Edition. 73 (14), 493 (1961).
  3. Wanzlick, H. W., Schikora, E. Ein nucleophiles Carben. Chemische Berichte. 94 (94), 2389-2393 (1961).
  4. Böhm, V. P. W., Herrmann, W. A. The "Wanzlick Equilibrium". Angewandte Chemie International Edition. 39 (22), 4036-4038 (2000).
  5. Hahn, F. E., Wittenbecher, L., Le Van, D., Fröhlich, R. Evidence for an Equilibrium between an N-heterocyclic Carbene and Its Dimer in Solution. Angewandte Chemie International Edition. 39 (3), 541-544 (2000).
  6. Denk, M. K., Hatano, K., Ma, M. Nucleophilic Carbenes and the Wanzlick Equilibrium: A Reinvestigation. Tetrahedron Letters. 40 (11), 2057-2060 (1999).
  7. Liu, Y., Lemal, D. M. Concerning the Wanzlick equilibrium. Tetrahedron Letters. 41, 599-602 (2000).
  8. Arduengo, A. J., Goerlich, J. R., Marshall, W. J. A Stable Thiazol-2-ylidene and its Dimer. Liebigs Annalen der Chemie. , 365-374 (1997).
  9. Alder, R. W., Blake, M. E., Chaker, L., Harvey, J. N., Paolini, F., Schutz, J. When and how do diaminocarbenes dimerize?. Angewandte Chemie International Edition. 43 (44), 5896-5911 (2004).
  10. Chen, Y. -. T., Jordan, F. Reactivity of the Thiazolium C2 Ylide in Aprotic Solvents: Novel Experimental Evidence for Addition Rather Than Insertion Reactivity. Journal of Organic Chemistry. 56 (17), 5029-5038 (1991).
  11. Lemal, D. M., Lovald, R. A., Kawano, K. I. Tetraaminoethylenes. The Question of Dissociation. Journal of the American Chemical Society. 86 (12), 2518-2519 (1964).
  12. Alder, R. W., Chaker, L., Paolini, F. P. V. Bis(diethylamino)carbene and the mechanism of dimerisation for simple diaminocarbenes. Chemical Communications. 19 (19), 2172-2173 (2004).
  13. Baceiredo, A., Bertrand, G., Sicard, G. Synthesis of the First α-Diazo Phosphines. Phosphorus-Carbon Multiple-Bond Character of Phosphinocarbenes. Journal of the American Chemical Society. 107 (16), 4781-4783 (1985).
  14. Igau, A., Gruetzmacher, H., Baceiredo, A., Bertrand, G. Analogous alpha,alpha’ Bis-Carbenoid Triply Bonded Species: Synthesis of a Stable lambda3-Phosphinocarbene-lambda5-Phosphaacetylene. Journal of the American Chemical Society. 110 (19), 6463-6466 (1988).
  15. Arduengo, A. J., Harlow, R. L., Kline, M. A Stable Crystalline Carbene. Journal of the American Chemical Society. 113 (1), 363-365 (1991).
  16. Schaub, T., Backes, M., Radius, U. Nickel (0) Complexes of N-Alkyl-Substituted N-Heterocyclic Carbenes and Their Use in the Catalytic Carbon−Carbon Bond Activation of Biphenylene. Organometallics. 25, 4196-4206 (2006).
  17. Jolly, P. I., Zhou, S., Thomson, D. W., Garnier, J., Parkinson, J. A., Tuttle, T., Murphy, J. A. Imidazole-derived carbenes and their elusive tetraazafulvalene dimers. Chemical Science. 3 (5), 1675-1679 (2012).
  18. Lavallo, V., Canac, Y., Prasang, C., Donnadieu, B., Bertrand, G. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. Angewandte Chemie International Edition. 44 (35), 5705-5709 (2005).
  19. Hahn, F. E. Introduction: Carbene Chemistry. Chemical Reviews. 118 (19), 9455-9456 (2018).
  20. Rovis, T., Nolan, S. P. Stable carbenes: from "laboratory curiosities" to catalysis mainstays. Synlett. 24 (10), 1188-1189 (2013).
  21. Arduengo, A. J., Bertrand, G. Carbenes introduction. Chemical Reviews. 109 (8), 3209-3210 (2009).
  22. Diez Gonzalez, S. . N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. , (2010).
  23. Nolan, S. P. . N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. , (2014).
  24. Soleilhavoup, M., Bertrand, G. Cyclic (alkyl)(amino) carbenes (CAACs): Stable carbenes on the rise. Accounts of Chemical Research. 48 (2), 256-266 (2015).
  25. Roy, S., Mondal, K. C., Roesky, H. W. Cyclic alkyl (amino) carbene stabilized complexes with low coordinate metals of enduring nature. Accounts of Chemical Research. 49 (3), 357-369 (2016).
  26. Melaimi, M., Soleilhavoup, M., Bertrand, G. Stable cyclic carbenes and related species beyond diaminocarbenes. Angewandte Chemie International Edition. 49 (47), 8810-8849 (2010).
  27. Melaimi, M., Jazzar, R., Soleilhavoup, M., Bertrand, G. Cyclic (Alkyl)(amino) Carbenes (CAACs): recent developments. Angewandte Chemie International Edition. 56 (34), 10046-10068 (2017).
  28. Paul, U. S. D., Radius, U. What Wanzlick Did Not Dare To Dream: Cyclic (Alkyl)(amino) carbenes (CAACs) as New Key Players in Transition‐Metal Chemistry. European Journal of Inorganic Chemistry. 2017 (28), 3362-3375 (2017).
  29. Jazzar, R., Bourg, J. B., Dewhurst, R. D., Donnadieu, B., Bertrand, G. Intramolecular "Hydroiminiumation and-amidiniumation" of alkenes: A convenient, flexible, and scalable route to cyclic iminium and imidazolinium salts. Journal of Organic Chemistry. 72, 3492-3499 (2007).
  30. Zeng, X., Frey, G. D., Kinjo, R., Donnadieu, B., Bertrand, G. Synthesis of a Simplified Version of Stable Bulky and Rigid Cyclic (Alkyl)(Amino)Carbenes (CAACs), and Catalytic Activity of the Ensuing Gold(I) Complex in the Three-Component Preparation of 1,2-Dihydroquinoline Derivatives. Journal of the American Chemical Society. 131 (24), 8690-8696 (2009).
  31. Chu, J., Munz, D., Jazzar, R., Melaimi, M., Bertrand, G. Synthesis of hemilabile cyclic (alkyl)(amino) carbenes (CAACs) and applications in organometallic chemistry. Journal of the American Chemical Society. 138 (25), 7884-7887 (2016).
  32. Munz, D. Pushing Electrons—Which Carbene Ligand for Which Application?. Organometallics. 37 (3), 275-289 (2018).
  33. Cardin, D. J., Cetinkaya, B., Lappert, M. F., Manojlovic-Muir, L. J., Muir, K. W. An electron-rich olefin as a source of co-ordinated carbene; synthesis of trans-PtCl2[C(NPhCH2)2]PEt3. Chemical Communications. 8 (8), 400-401 (1971).
  34. Hocker, J., Merten, R. Reactions of Electron-Rich Olefins with Proton-Active Compounds. Angewandte Chemie International Edition. 11 (11), 964-973 (1972).
  35. Hoffmann, R. W. Reactions of Electron-Rich Olefins. Angewandte Chemie International Edition. 7 (10), 754-765 (1968).
  36. Deuchert, K., Hünig, S. Multistage Organic Redox Systems—A General Structural Principle. Angewandte Chemie International Edition. 17 (12), 875-886 (1978).
  37. Taton, T. A., Chen, P. A Stable Tetraazafulvalene. Angewandte Chemie International Edition. 35 (9), 1011-1013 (1996).
  38. Wudl, F., Wobschall, D., Hufnagel, E. J. Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system. Angewandte Chemie International Edition. 94 (2), 670-672 (1972).
  39. Wudl, F., Smith, G. M., Hufnagel, E. J. Bis-1,3-dithiolium Chloride: an Unusually Stable Organic Radical Cation. Chemical Communications. (21), 1453-1454 (1970).
  40. Ferraris, J., Cowan, D. O., Walatka, V., Perlstein, J. H. Electron transfer in a new highly conducting donor-acceptor complex. Angewandte Chemie International Edition. 95 (3), 948-949 (1973).
  41. Broggi, J., Terme, T., Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angewandte Chemie International Edition. 53 (2), 384-413 (2014).
  42. Murphy, J. A. Discovery and Development of Organic Super-Electron-Donors. Journal of Organic Chemistry. 79 (9), 3731-3746 (2014).
  43. Garnier, J., et al. Hybrid super electron donors – preparation and reactivity. Beilstein. Journal of Organic Chemistry. 8, 994-1002 (2012).
  44. Bendikov, M., Wudl, F., Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics. Chemical Reviews. 104 (11), 4891-4946 (2004).
  45. Martin, C. D., Soleilhavoup, M., Bertrand, G. Carbene-stabilized main group radicals and radical ions. Chemical Science. 4, 3020 (2013).
  46. Mondal, K. C., Roy, S., Roesky, H. W. Silicon based radicals, radical ions, diradicals and diradicaloids. Chemical Society Reviews. 45, 1080-1111 (2016).
  47. Kim, Y., Lee, E. Stable Organic Radicals Derived from N-Heterocyclic Carbenes Chemistry. Chemistry: A European Journal. 24 (72), 19110-19121 (2018).
  48. Messelberger, J., Grünwald, A., Pinter, P., Hansmann, M. M., Munz, D. Carbene derived diradicaloids – building blocks for singlet fission?. Chemical Science. 9, 6107-6117 (2018).
  49. Hansmann, M. M., Melaimi, M., Munz, D., Bertrand, G. Modular Approach to Kekulé Diradicaloids Derived from Cyclic (Alkyl)(amino)carbenes. Journal of the American Chemical Society. 140 (7), 2546-2554 (2018).
  50. Hansmann, M. M., Melaimi, M., Bertrand, G. Organic Mixed Valence Compounds Derived from Cyclic (Alkyl)(amino)carbenes. Journal of the American Chemical Society. 140 (6), 2206-2213 (2018).
  51. Rottschäfer, D., Neumann, B., Stammler, H. -. G., van Gastel, M., Andrada, D. M., Ghadwal, R. S. Crystalline Radicals Derived from Classical N‐Heterocyclic Carbenes. Angewandte Chemie. 130 (7), 4765-4768 (2018).
  52. Rottschäfer, D., Neumann, B., Stammler, H. -. G., Andrada, D. M., Ghadwal, R. S. Kekulé diradicaloids derived from a classical N-heterocyclic carbene. Chemical Science. 9 (22), 4970-4976 (2018).
  53. Rottschäfer, D., Ho, N. K. T., Neumann, B., Stammler, H. -. G., van Gastel, M., Andrada, D. M., Ghadwal, R. S. N‐Heterocyclic Carbene Analogues of Thiele and Chichibabin Hydrocarbons. Angewandte Chemie International Edition. 57 (20), 5838-5842 (2018).
  54. Barry, B. M., Soper, R. G., Hurmalainen, J., Mansikkamaki, A., Robertson, K. N., McClennan, W. L., Veinot, A. J., Roemmele, T. L., Werner-Zwanziger, U., Boere, R. T., Tuononen, H. M., Clyburne, J. A. C., Masuda, J. D., Barry, B. M. Mono- and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bis-1,4-([3]Cumulene)-p-carboquinoid System. Angewandte Chemie International Edition. 57 (3), 749-754 (2018).
  55. Nielsen, M. B., Lomholt, C., Becher, J. Tetrathiafulvalenes as building blocks in supramolecular chemistry II. Chemical Society Reviews. 29 (3), 153-164 (2000).
  56. Bergkamp, J. J., Decurtins, S., Liu, S. -. X. Current advances in fused tetrathiafulvalene donor-acceptor systems. Chemical Society Reviews. 44 (4), 863-874 (2015).
  57. Kirtley, J. R., Mannhart, J. Organic electronics: When TTF met TCNQ. Nature Materials. 7 (7), 520-521 (2008).
  58. Lorcy, D., Bellec, N., Fourmigué, M., Avarvari, N. Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coordination Chemistry Reviews. 253 (9-10), 1398-1438 (2009).
  59. Goetz, K. P., Vermeulen, D., Payne, M. E., Kloc, C., McNeil, L. E., Jurchescu, O. D. Charge-transfer complexes: new perspectives on an old class of compounds. Journal of Materials Chemistry. 2 (17), 3065-3076 (2014).
  60. Munz, D., Chu, J., Melaimi, M., Bertrand, G. NHC-CAAC Heterodimers with Three Stable Oxidation States. Angewandte Chemie International Edition. 55 (41), 12886-12890 (2016).
  61. Mandal, D., et al. Stepwise Reversible Oxidation of N-Peralkyl-Substituted NHC-CAAC Derived Triazaalkenes: Isolation of Radical Cations and Dications. Organic Letters. 19 (20), 5605-5608 (2017).
  62. Antoni, P. W., Hansmann, M. M. Pyrylenes: A New Class of Tunable, Redox-Switchable, Photoexcitable Pyrylium-Carbene Hybrids with Three Stable Redox-States. Journal of the American Chemical Society. 140 (44), 14823-14835 (2018).
  63. Back, O., Henry-Ellinger, M., Martin, C. D., Martin, D., Bertrand, G. (PNMR)-P-31 Chemical Shifts of Carbene-Phosphinidene Adducts as an Indicator of the pi-Accepting Properties of Carbenes. Angewandte Chemie International Edition. 52 (10), 2939-2943 (2013).
  64. Jazzar, R., Dewhurst, R. D., Bourg, J. B., Donnadieu, B., Canac, Y., Bertrand, G. Intramolecular "Hydroiminiumation" of alkenes: Application to the synthesis of conjugate acids of cyclic alkyl amino carbenes (CAACs). Angewandte Chemie International Edition. 46 (16), 2899-2902 (2007).
  65. Benac, B. L., Burgess, E. M., Arduengo, A. J. 1,3-Dimethylimidazole-2-Thione. Organic Syntheses. 64, 92 (1986).
  66. Arduengo, A. J., Davidson, F., Dias, H. V. R., Goerlich, J. R., Khasnis, D., Marshall, W. J., Prakasha, T. K. An air stable carbene and mixed carbene "dimers&#34. Journal of the American Chemical Society. 119, 12742-12749 (1997).
  67. Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W., Bertrand, G. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science. 316 (5827), 439-441 (2007).
  68. Verlinden, K., Buhl, H., Frank, W., Ganter, C. Determining the Ligand Properties of N-Heterocyclic Carbenes from 77Se NMR Parameters. European Journal of Inorganic Chemistry. 2015 (14), 2416-2425 (2015).
  69. Vummaleti, S. V. C., et al. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the [small pi]-accepting abilities of N-heterocyclic carbenes?. Chemical Science. 6 (3), 1895-1904 (2015).
  70. Hahn, F. E., Jahnke, M. C. Heterocyclic Carbenes: Synthesis and Coordination Chemistry. Angewandte Chemie International Edition. 47 (17), 3122-3172 (2008).
  71. Braun, M., Frank, W., Reiss, G. J., Ganter, C. An N-Heterocyclic Carbene Ligand with an Oxalamide Backbone. Organometallics. 29 (20), 4418-4420 (2010).
  72. Moerdyk, J. P., Schilter, D., Bielawski, C. W. N,N’-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity. Accounts of Chemical Research. 49 (8), 1458-1468 (2016).
  73. Mandal, D., et al. Stepwise Reversible Oxidation of N-Peralkyl-Substituted NHC-CAAC Derived Triazaalkenes: Isolation of Radical Cations and Dications. Organic Letters. 19 (20), 5605-5608 (2017).
  74. Torres, A. J., Dorsey, C. L., Hudnall, T. W. Preparation and Use of Carbonyl-decorated Carbenes in the Activation of White Phosphorus. Journal of Visualized Experiments. (92), e52149 (2014).
  75. Hahn, F. E., Wittenbecher, L., Van Le, D., Fröhlich, R. Evidence for an Equilibrium Between an N-heterocyclic Carbene and Its Dimer in Solution. Angewandte Chemie International Edition. 3 (39), 5441-5544 (2000).
  76. Weinstein, C. M., Martin, C. D., Liu, L., Bertrand, G. Cross-Coupling Reactions Between Stable Carbenes. Angewandte Chemie International Edition. 53 (25), 6550-6553 (2014).
check_url/59389?article_type=t

Play Video

Cite This Article
Grünwald, A., Goodner, S. J., Munz, D. Isolating Free Carbenes, their Mixed Dimers and Organic Radicals. J. Vis. Exp. (146), e59389, doi:10.3791/59389 (2019).

View Video