Summary

链球菌中高分子质量蛋白的纯化

Published: September 14, 2019
doi:

Summary

这里描述的是一个简单的方法,用于纯化链球菌中的基因产物。该技术在蛋白质,特别是膜蛋白和高分子质量蛋白的纯化方面可能有利,可用于其他各种细菌物种。

Abstract

解释基因的功能通常涉及野生型菌株和菌株的类名特征的比较,其中感兴趣的基因已被破坏。基因中断后功能丧失随后通过中断基因产物的外源性添加而恢复。这有助于确定基因的功能。前面描述的方法涉及生成gtfC基因破坏的链球菌菌株。在这里,描述了一种不要求的方法,用于在基因中断后从新生成的S.mutans菌株中纯化gtfC基因产物。它涉及在感兴趣的基因的3°端添加多聚苯乙烯编码序列,允许使用固定金属亲和色谱简单纯化基因产物。在此方法的遗传修饰中,不需要 PCR 以外的酶反应。基因破坏后通过外源性补充恢复基因产物是确定基因功能的有效方法,也可以适应不同的物种。

Introduction

对基因功能的分析通常涉及将野生型菌株的类特征与被破坏的菌株进行比较。一旦产生基因中断的菌株,基因产物的外源性添加允许功能恢复。

获得后续恢复测定所需的纯化基因产物的最常见方法是在大肠杆菌1中执行异体表达。然而,膜蛋白或高分子质量蛋白的表达往往很难使用这个系统1。在这些情况下,目标蛋白通常从通过一系列复杂的步骤原生合成蛋白质的细胞中分离出来,这可能导致基因产物的丧失。为了克服这些问题,根据基因破坏方法2、基于PCR的DNA拼接方法3(指定的两步融合PCR)和基因电穿孔,为基因产物纯化开发了一个简单的程序。在链球菌的转化。在基因产品的C-终点区添加多肽标记(His-tag)有助于通过固定金属亲和色谱(IMAC)进行纯化。

为了分离His-tag表达菌株,感兴趣的基因的整个基因组DNA(在这个His-tag表达基因中断的菌株中)被一个抗生素抗药性标记基因所取代。产生His-tag表达应变的过程与产生基因中断的应变的过程几乎相同,如前面描述的4,5。因此,基因破坏和基因产物分离的方法应作为功能分析的序列实验进行。

在本工作中,多聚苯二烯编码序列被附加到gtfC(GenBank locus标记SMU_1005)基因的3°端,在S.mutans6中编码葡聚酰亚胺转移酶-SI(GTF-SI)。然后,对链球菌物种进行表达研究。大肠杆菌实现异源性gtfC表达是困难的,很可能是因为GTF-SI的分子质量很高。这种菌株被命名为S.穆坦斯·特夫克。图解图中描绘了野生S.mutans(S.mutans WT)中gtfC和光谱素抗基因盒(spcr)7位数的组织及其衍生物。图 1.GTF-SI是一种分泌蛋白,有助于培育造血性牙科生物膜6。在蔗糖的存在下,在WT S.mutans菌株的光滑玻璃表面上观察到粘附生物膜,但在S.mutans gtfC-中断菌株(S.mutans +gtfC)2、5.当重组GTF-SI的外源性添加后,生物膜形成在S.mutans _gtfC中恢复。应变,S.mutans His-gtfC,然后用于生产重组GTF-SI。

Protocol

注:在生成S. mutans _gtfC(其中 gtfC基因的整个编码区域被替换为spcr)之前,必须在执行这些协议之前完成。有关第5代 的详细信息,请参阅已发表的文章。 1. 底漆设计 准备引力为S.mutans他-gtfC的建设。注:本协议中使用的引性序列如表1所示。<strong …

Representative Results

图 3显示了第一个 PCR(图 3A)和第二 PCR (图 3B) 中每个放大子的大小。如表 1所述,每个放大子的大小与预测大小相对应。图4A显示了用第二种PCR产品转化并镀在含有霉素的BHI琼脂板上的S.mutans菌落。然后,在胶凝剂凝胶上运行殖民地 PCR 产品 (?…

Discussion

引体的设计是协议中最关键的一步。gtfC-反向和spcr-前引基的序列根据gtfC的3°端区域和spcr的5°端区域的顺序自动确定。每个引基包括 24 个互补基库,这些基础对 GS 链接器进行编码,并在其 5′ 区域对 His-tag 编码序列进行编码。通过在 3° 端添加 His 标记编码序列,可以避免位于上游侧翼区域的本机调控序列中断。DNA停止科顿必须从gtfC-反向引基器中…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本科学促进会(JSPS)(赠款号16K15860和19K10471至T.M.、17K12032至M.I.和18K09926到N.H.)和SECOM科学技术基金会(赠款号2018.09.10号)的支持。

Materials

Agarose Nippon Genetics NE-AG02 For agarose gel electrophoresis
Anaeropack Mitsubishi Gas Chemical A-03 Anaerobic culture system
Anti-His-Tag monoclonal antibody MBL D291-7 HRP-conjugated
BCA protein assay kit Thermo Fisher Scientific 23227 Measurement of protein concentration
Brain heart infusion broth Becton, Dickinson 237500 Bacterial culture medium
CBB R-250 Wako 031-17922 For biofilm staining
Centrifugal ultrafiltration unit Sartorius VS2032 Buffer replacement and protein concentration
Centrifuge Kubota 7780II
Chromatographic column Bio-Rad 7321010 For IMAC
Dialysis membrane clamp Fisher brand 21-153-100
Dialysis tubing As One 2-316-06
DNA polymerase Takara R045A High-fidelity DNA polymerase
DNA sequencing Eurofins Genomics
ECL substrate Bio-Rad 170-5060 For western blotting
EDTA (0.5 M pH 8.0) Wako 311-90075 Tris-EDTA buffer preparation
Electroporation cuvette Bio-Rad 1652086 0.2 cm gap
Electroporator Bio-Rad 1652100
EtBr solution Nippon Gene 315-90051 For agarose gel electrophoresis
Gel band cutter Nippon Genetics FG-830
Gel extraction kit Nippon Genetics FG-91202 DNA extraction from agarose gel
Imager GE Healthcare 29083461 For SDS-PAGE and western blotting
Imidazole Wako 095-00015 Binding buffer and elution buffer preparation
Incubator Nippon Medical & Chemical Instruments EZ-022 Temperature setting: 4 °C
Incubator Nippon Medical & Chemical Instruments LH-100-RDS Temperature setting: 37 °C
Membrane filter Merck Millipore JGWP04700 0.2 µm diameter
Microcentrifuge Kubota 3740
NaCl Wako 191-01665 Preparation of binding buffer and elution buffer
NaH2PO4·2H2O Wako 192-02815 Preparation of binding buffer and elution buffer
NaOH Wako 198-13765 Preparation of binding buffer and elution buffer
(NH4)2SO4 Wako 015-06737 Ammonium sulfate precipitation
Ni-charged resin Bio-Rad 1560133 For IMAC
PCR primers Eurofins Genomics Custom-ordered
Protein standard Bio-Rad 161-0381 For SDS-PAGE and western blotting
Solvent filtration apparatus As One FH-1G
Spectinomycin Wako 195-11531 Antibiotics; use at 100 μg/mL
Sterile syringe filter Merckmillipore SLGV004SL 0.22 µm diameter
Streptococus mutans ΔgtfC Stock strain in the lab. gtfC replaced with spcr
Streptococus mutans UA159 Stock strain in the lab. S. mutans ATCC 700610, Wild-type strain
Sucrose Wako 196-00015 For biofilm development
TAE (50 × ) Nippon Gene 313-90035 For agarose gel electrophoresis
Thermal cycler Bio-Rad PTC-200
Tris-HCl (1 M, pH 8.0) Wako 314-90065 Tris-EDTA buffer preparation

References

  1. Sambrook, J., Russell, D. W. . Molecular Cloning: A Laboratory Manual 3rd Edition. , (2001).
  2. Murata, T., Ishikawa, M., Shibuya, K., Hanada, N. Method for functional analysis of a gene of interest in Streptococcus mutans: gene disruption followed by purification of a polyhistidine-tagged gene product. Journal of Microbiological Methods. 155, 49-54 (2018).
  3. Horton, R. M., Cai, Z., Ho, S. M., Pease, L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 54 (3), 129-133 (2013).
  4. Murata, T., Hanada, N. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans. FEMS Microbiology Letters. 363 (11), 101 (2016).
  5. Murata, T., Okada, A., Matin, K., Hanada, N. Generation of a gene-disrupted Streptococcus mutans strain without gene cloning. Journal of Visualized Experiments. (128), (2017).
  6. Hanada, N., Kuramitsu, H. K. Isolation and characterization of the Streptococcus mutansgtfC gene, coding for synthesis of both soluble and insoluble glucans. Infection and Immunity. 56 (8), 1999-2005 (1988).
  7. LeBlanc, D. J., Lee, L. N., Inamine, J. M. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrobial Agents and Chemotherapy. 35 (9), 1804-1810 (1991).
  8. Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. (63), e3998 (2012).
  9. Database, J. S. E. PCR: The Polymerase Chain Reaction. Journal of Visualized Experiments. , (2019).
  10. Database, J. S. E. DNA Gel Electrophoresis. Journal of Visualized Experiments. , (2019).
  11. Database, J. S. E. Gel Purification. Journal of Visualized Experiments. , (2019).
  12. Wingfield, P. T. Protein precipitation using ammonium sulfate. Current Protocols in Protein Science. 84 (1), (2016).
  13. Database, J. S. E. Separating Protein with SDS-PAGE. Journal of Visualized Experiments. , (2019).
  14. Database, J. S. E. The Western Blot. Journal of Visualized Experiments. , (2019).
  15. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150 (1), 76-85 (1985).
  16. Perry, D., Wondrack, L. M., Kuramitsu, H. K. Genetic transformation of putative cariogenic properties in Streptococcus mutans. Infection and Immunology. 41 (2), 722-727 (1983).
  17. Lau, P. C., Sung, C. K., Lee, J. H., Morrison, D. A., Cvitkovitch, D. G. PCR ligation mutagenesis in transformable streptococci: application and efficiency. Journal of Microbiological Methods. 49 (2), 193-205 (2002).
  18. Ge, X., Xu, P. Genome-wide gene deletions in Streptococcus sanguinis by high throughput PCR. Journal of Visualized Experiments. (69), (2012).
check_url/59804?article_type=t

Play Video

Cite This Article
Murata, T., Yamashita, M., Ishikawa, M., Shibuya, K., Hanada, N. Purification of a High Molecular Mass Protein in Streptococcus mutans. J. Vis. Exp. (151), e59804, doi:10.3791/59804 (2019).

View Video