Summary

评估大鼠急性中风后脑恢复的临床前模型

Published: November 06, 2019
doi:

Summary

本研究的目的是通过测试1-90年后脑动脉闭塞/再灌注(MCAO/R)后脑梗死和感觉运动功能,建立和验证用于脑缺血恢复和后遗症阶段研究的动物模型。在老鼠天。

Abstract

本研究的目的是建立和验证动物脑缺血模型在恢复和后遗症阶段。选择了雄性斯普拉格-道利大鼠的中脑动脉闭塞/再灌注(MCAO/R)模型。通过改变大鼠的重量(260–330克),使用Longa的得分和TTC染色筛选出螺纹螺栓类型(2636/2838/3040/3043)和脑梗死时间(2-3小时),隆加的分数越高,梗死体积越大,模型成功率也更高。通过评估感觉运动功能和梗塞体积,在重新灌注后的1-90天观察期内获取并使用了最佳模型条件(300 g、3040螺纹螺栓、3小时脑梗死时间)。在这些条件下,双边不对称试验有1至90天的显著差异,网格行走试验有1天至60天的显著差异;两者的差异可能是一个合适的传感器电机功能测试。因此,在脑缺血的恢复和后遗症阶段发现一种新型大鼠模型的最合适条件:300克大鼠用3040螺纹螺栓进行MCAO治疗,用于3小时脑梗死,然后重新注入。适当的传感器运动功能测试是双边不对称测试和网格行走测试。

Introduction

脑缺血分为三个阶段,不同的中风后指标:急性阶段(1周内)、恢复阶段(1周至6个月)和后遗症阶段(6个月以上)。目前,大多数研究都集中在脑缺血的急性期,因为它有显著的影响和多相对的研究模型1,2,3。然而,脑缺血的恢复和后遗症,由于其长期的残疾并发症,不能忽视。因此,本研究的目的是探索一个稳定、可靠和相对简单的动物模型,研究脑缺血的恢复和后遗症。

在众多实验性脑缺血模型中,我们通过螺纹螺栓插入右中脑动脉(MCA)使用中脑动脉闭塞(MCAO)。该模型类似于人类中风,它可以产生更大的梗塞体积,导致许多与中风相关的行为障碍,并可以通过去除螺纹螺栓4,5,6允许血液再灌注(R)。MCAO/R也被认为是脑缺血7的黄金标准动物模型。此外,脑损伤的严重程度取决于螺纹螺栓的直径和插入长度,脑缺血的持续时间,以及动物体重(大鼠大脑更大,脑血管较厚)8。因此,通过改变螺纹螺栓类型、梗死时间和大鼠重量,可以为MCAO/R大鼠脑缺血的恢复和后遗症找到合适的模型。为了验证大鼠模型,我们使用 TTC 染色和传感器运动功能实验(双边不对称测试、网格行走测试、轮盘试验和提升绳测试)对 MCAO/R 模型进行了为期 1 天、35 天、60 天和 90 天的研究。

Protocol

动物受试者的程序和使用已获得国家卫生研究院批准用于照料和使用实验室动物。该协议针对中脑动脉闭塞/再灌注(MCAO/R)和感觉运动功能的测试进行了专门调整。 1. 实验设计和分组 使用大鼠 MCAO/R 模型筛选大鼠脑缺血模型方法,使用 Longa 的得分和 TTC 染色,具有更严重的脑损伤和更高的模型成功率。 对体重为260~330克、年龄为7~9周的雄性斯普拉格-道利大鼠进?…

Representative Results

使用上述程序为MCAO/R模型与隆加的分数和TTC染色,平均重量(275/300/320克),螺栓类型(2636/2838/3040/3043的不同处理;表 1)缺血时间(2-3小时)和1天再灌注用于筛选大鼠最佳脑缺血模型。300 g 重量、3040 螺纹螺栓和 3 小时脑梗塞时间的模型参数最适合面临的最大脑梗死、最高龙加的得分和最大的模型成功率。在275g重量、2636螺纹螺栓和2小时脑梗死时间的传统处?…

Discussion

许多建立方法和行为指标的模型在急性脑缺血中得到了很好的应用,在脑缺血的恢复和后遗症阶段可能没有显著变化。然而,在恢复和后遗症阶段,脑缺血患者的数量最大。必须选择适合缺血性中风的恢复和后遗症的动物模型。

我们使用大鼠的MCAO/R模型来筛选大鼠的合适重量(260~330克)、螺纹螺栓类型(2636/2838/3040/3043)以及最严?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(81603315,81603316),中国江西省重点研发计划(20171ACH80001),福建省高校产业与学术合作项目的支持。中国 (2018Y41010011)。

Materials

Anatomical Microscope Leica (Germany) S8 Microscopic operating instrument
Blade Gellette / Cutting brain sections
Constant Temperature Shaking Bed Taicang Experimental Equipment Factory THZ-C To keep the brain sections stained evenly and at a constant temperature
Digital Camera Canon 700D For taking pictures of TTC staining
Electric Shaver Shanghai Yuyan Scientific Instruments Co., Ltd. 3000# Removal of hair from the neck of rats
Forceps Hamostatic Shanghai Medical device Co., Ltd. 14 cm Using for brain removing
Image Pro Plus Software Media Cybernetics Inc. 6.0 Analyze the infarct volume
Isoflurane RWD Life Science 217170702 Anesthetic gas
Microforceps Shanghai Jinzhong Medical Devices Co., Ltd. 10 cm Vascular micromanipulation
Microshear Shanghai Jinzhong Medical Devices Co., Ltd. 10 cm Vascular micromanipulation
Ophthalmic Forceps Shanghai Jinzhong Medical Devices Co., Ltd. 10 cm Auxiliary skin and muscle anatomy
Pphthalmic Scissors Shanghai Jinzhong Medical Devices Co., Ltd. 10 cm Using for cutting the skin of neck
Rat Brain Slice Mold Shanghai Yuyan Scientific Instruments Co., Ltd. 400 g For standard, uniform cutting of brain tissue
Rat Rotating Bar Fatigue Apparatus Anhui Zhenghua Biological Instrument and Equipment Co., Ltd. ZH-300B To test the sensorimotor function
Small Animal Anaesthesia Machine Shanghai Yuyan Scientific Instruments Co., Ltd. ABM3000 A gas anesthetic machine
Small Animal Thermostat Beijing Damida Technology Co., Ltd. DM.7-YLS-20A To maintain animal body temperature constant during operation
Surgical Scissors Shanghai Medical device Co., Ltd. 16 cm Using for decapitate and brain removing
Suture Shanghai Jinhuan Medical Devices Co., Ltd. 4-0 / 5-0 Using for skin and muscle sutures / Using for vascular ligations
Thread Bolt Beijing Cinontech Co. Ltd. 2636/2838/3040/3043-A4 Blockage of the middle cerebral artery in rats
5-triphenyl-2H-tetrazolium chloride (TTC) Sigma LOT#BCBP3272V Brain section staining reagent

References

  1. Kong, L. L., et al. Neutralization of chemokine-like factor 1, a novel C-C chemokine, protects against focal cerebral ischemia by inhibiting neutrophil infiltration via MAPK pathways in rats. Journal of Neuroinflammation. 11, 112 (2014).
  2. Jiang, M., et al. Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. Journal of Neuroinflammation. 11, 167 (2014).
  3. Thomas, A., Detilleux, J., Flecknell, P., Sandersen, C. Impact of Stroke Therapy Academic Industry Roundtable (STAIR) Guidelines on Peri-Anesthesia Care for Rat Models of Stroke: A Meta-Analysis Comparing the Years 2005 and 2015. PLoS One. 12, e0170243 (2017).
  4. Kumar, A., Aakriti, V., Gupta, A review on animal models of stroke: An update. Brain Research Bulletin. 122, 35-44 (2016).
  5. Tong, F. C., et al. An enhanced model of middle cerebral artery occlusion in nonhuman primates using an endovascular trapping technique. AJNR Am. Journal of Neuroradiology. 36, 2354-2359 (2015).
  6. Li, F., Omae, T., Fisher, M. Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke. 30, 2464-2470 (1999).
  7. Herson, P. S., Traystman, R. J. Animal models of stroke: translational potential at present and in 2050. Future Neurology. 9, 541-551 (2014).
  8. Abrahám, H., Somogyvári-Vigh, A., Maderdrut, J. L., Vigh, S., Arimura, A. Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp. Brain Res. 142, 131-138 (2002).
  9. Sun, M. N., et al. Coumarin derivatives protect against ischemic brain injury in rats. European Journal of Medicinal Chemistry. 67, 39-53 (2013).
  10. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20, 84-91 (1989).
  11. Smith, E. J., et al. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cell. 30, 785-796 (2012).
  12. Zhang, S., et al. Protective effects of Forsythia suspense extract with antioxidant and anti-inflammatory properties in a model of rotenone induced neurotoxicity. Neurotoxicology. 52, 72-83 (2016).
  13. Milani, D., et al. Poly-arginine peptides reduce infarct volume in a permanent middle cerebral artery rat stroke model. BMC Neuroscience. 17, 19 (2016).
  14. DeGraba, T. J., Ostrow, P., Hanson, S., Grotta, J. C. Motor performance, histologic damage, and calcium influx in rats treated with NBQX after focal ischemia. Journal of Cerebral Blood Flow and Metabolism. 14, 262-268 (1994).
  15. Liu, P., et al. Validation of a preclinical animal model to assess brain recovery after acute stroke. European Journal of Pharmacology. 835, 75-81 (2018).
  16. Zuo, W., et al. IMM-H004 prevents toxicity induced by delayed treatment of tPA in a rat model of focal cerebral ischemia involving PKA-and PI3K-dependent Akt activation. European Journal of Neuroscience. 39, 2107-2118 (2014).
  17. Yang, L., et al. L-3-n-butylphthalide Promotes Neurogenesis and Neuroplasticity in Cerebral Ischemic Rats. CNS Neuroscience & Therapeutics. 21, 733-741 (2015).
check_url/60166?article_type=t

Play Video

Cite This Article
Liu, P., Song, X., Yang, X., Cao, Q., Tang, Y., Liu, X., Yang, M., An, W., Dong, B., Song, X. A Preclinical Model to Assess Brain Recovery After Acute Stroke in Rats. J. Vis. Exp. (153), e60166, doi:10.3791/60166 (2019).

View Video