Summary

使用路西法黄电磷学可视化星形形态

Published: September 14, 2019
doi:

Summary

星形细胞是形态复杂的细胞,其多重过程和茂密的区域就是例证。为了分析它们的精细形态,我们提出了一种可靠的方案,用于在轻度固定组织中执行细胞内路西法黄色淋病。

Abstract

星形细胞是神经回路的重要组成部分。它们将整个中枢神经系统 (CNS) 分片,并参与各种功能,包括神经递质清除、组子调节、突触调节、神经元代谢支持和血流调节。星形细胞是一个复杂的细胞,具有索马,几个主要分支,和许多精细的过程,接触神经皮内不同的细胞元素。为了评估星形细胞的形态,有必要有一个可靠和可重复的方法来可视化其结构。我们报告一种可靠的方案,在成年小鼠的轻度固定脑组织中使用荧光路西法黄色(LY)染料对星形细胞进行细胞内电泳。该方法具有几个特征,可用于表征星形细胞形态。它允许对单个星形细胞进行三维重建,这有利于对其结构的不同方面进行形态分析。免疫组织化学与LY电泳也可用于了解星形细胞与神经系统不同成分的相互作用,并评估标记的星形细胞中蛋白质的表达。该协议可以在各种中枢神经系统疾病小鼠模型中实现,用光显微镜严格检查星形细胞形态。LY风泳提供了一种评估星形细胞结构的实验方法,特别是在损伤或疾病的情况下,这些细胞被建议经历显著的形态变化。

Introduction

星形细胞是中枢神经系统(CNS)中最丰富的胶质细胞。它们在ion平衡、血流调节、突触形成以及消除和神经递质接受1中发挥作用。星形细胞函数的范围广泛反映在其复杂的形态结构2,3。星形细胞包含几个初级和次要分支,它们分为数千个细枝和传单,直接与突触、树突、斧头、血管和其他胶质细胞相互作用。星形细胞形态因大脑区域而异,这可能暗示它们在神经元回路4中不同地执行其功能的能力。此外,星形细胞已知在发育期间、生理条件和多种疾病状态3、5、6期间改变其形态。

需要一种一致、可重复的方法来准确解决星形细胞形态的复杂性。传统上,免疫性细胞化学已经被用来可视化星形细胞与星形细胞特定或星形细胞富集蛋白质标记。然而,这些方法揭示了蛋白质表达的模式,而不是星形细胞的结构。常用的标记物,如胶质纤维酸性蛋白(GFAP)和S100钙结合蛋白β(S100+),不表达在整个细胞体积中,因此不解决完整的形态7。在星形细胞中普遍存在的荧光蛋白(病毒注射或转基因小鼠报告线)的遗传方法可以识别更细的分支和整体区域。然而,很难区分单个星形细胞,并且分析可能偏向于特定启动子8所针对的星形细胞群。串行截面电子显微镜已被用来揭示星形细胞过程与突触相互作用的详细图片。由于数以千计的星形细胞过程接触突触,目前无法用这种技术9重建整个细胞,尽管随着使用机器学习方法进行数据分析,这种情况预计会发生变化。

在本报告中,我们重点介绍了使用细胞内风泳与Lucifer黄色(LY)染料来描述小鼠星形细胞的过程,以CA1层辐射为例。该方法是基于埃里克·布松和马克·埃利斯曼10、11的开创性过去工作。从轻固定脑切片的星形细胞由其独特的索马形状识别,并充满LY。然后,细胞通过共聚焦显微镜进行成像。我们演示了如何使用LY淋巴磷光来重建单个星形细胞,并对其过程和领地进行详细的形态分析。此外,该方法可与免疫组织化学结合使用,以识别星形细胞和神经元、其他胶质细胞和脑血管之间的空间关系和相互作用。我们认为LY电泳是一个非常合适的工具,用于分析不同大脑区域的形态和小鼠模型的健康或疾病状况7,12,13。

Protocol

这项研究中的动物实验是按照美国国家卫生指南,在实验室动物的护理和使用,并批准校长的动物研究委员会在洛杉矶加州大学。所有实验中都使用了混合性别的成年小鼠(6-8周大)。 1. 解决方案准备 人工脑脊液(ACSF)溶液 在每个实验前制备新鲜的 ACSF 溶液(135 mM NaCl、5 mM KCl、1 mM MgCl 2、14.7 mM NaHCO3、11mM D-葡萄糖、1.25 mM Na2HPO<su…

Representative Results

这项研究中报告的数据来自每个实验中4只小鼠的7-12个细胞。在适当情况下,在图形面板中报告平均数据。 为了评估星形细胞形态,我们使用LY染料进行细胞内风泳,以填充CA1层辐射中的星形细胞,如图1总结。图2描绘了一个代表性的星形细胞及其精细的形态结构。使用 488 nm 激光线(步长 0.3 μm 和 3.0±3.5 倍数字变焦)在共聚焦激光扫描显微…

Discussion

本文概述的方法描述了一种在轻度固定脑切片中使用LY染料细胞内电磷化来可视化星形细胞形态的方法。该协议中强调了几个关键因素,有助于成功的LY淋巴磷酸和细胞的形态重建。一个因素是图像的质量和可重复性,这主要取决于小鼠的年龄和灌注的结果。在这项研究中,我们使用6~8周大的C57/BL6N小鼠。成功的灌注(高度依赖于渗透针的正确放置,并注意到由白色的大脑和脑血管中没有血液)是?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢索托女士、余博士和Octeau博士对文本的指导以及评论。NS060677 支持此工作。

Materials

10% Buffered Formalin Phosphate Fisher SF 100-20 An identical alternative can be used
Acrodisc Syringe Filters with Supor Membrane Pall 4692 An identical alternative can be used
Ag/AgCl ground pellet WPI EP2 A similar alternative can be used
Alexa Fluor 546 goat anti-chicken IgG (H+L) Thermo Scientific A-11040 A similar alternative can be used
Alexa Fluor 647 goat anti-rabbit IgG (H+L) Thermo Scientific A27040 A similar alternative can be used
Anti Aquaporin-4 antibody Novus Biologicals NBP1-87679 A similar alternative can be used
Anti GFAP antibody Abcam ab4674 A similar alternative can be used
Borosilicate glass pipettes with filament World precision instruments 1B150F-4
C57BL/6NTac mice Taconic Stock B6 A similar alternative can be used
Calcium Chloride Sigma 21108 An identical alternative can be used
Confocal laser-scanning microscope Olympus FV1000MPE A similar alternative can be used
D-glucose Sigma G7528 An identical alternative can be used
Disodium Phosphate Sigma 255793 An identical alternative can be used
Electrode puller- Model P-97 Sutter P-97 A similar alternative can be used
Fluoromount-G Southern Biotech 0100-01 An identical alternative can be used
Heparin sodium injection (1,000 USP per mL) Sagent Pharmaceuticals 400-10 An identical alternative can be used
Imaris software (Version 7.6.5) Bitplane Inc. A similar alternative can be used
Isofluorane Henry Schein Animal Health 29404 An identical alternative can be used
Lidocaine Hydrochloride Injectable (2%) Clipper 1050035 An identical alternative can be used
Lucifer Yellow CH dilithium salt Sigma L0259
Lucifer Yellow CH dipotassium salt Sigma L0144
Magnesium Chloride Sigma M8266 An identical alternative can be used
Microscope Cover Glass Thermo Scientific 24X60-1 An identical alternative can be used
Microscope Slides Fisher 12-544-2 An identical alternative can be used
Normal Goat Serum Vector Laboratories S-1000 An identical alternative can be used
Objective lens (40x) Olympus LUMPLFLN 40XW A similar alternative can be used
Objective lens (60x) Olympus PlanAPO 60X A similar alternative can be used
PBS tablets, 100 mL VWR VWRVE404 An identical alternative can be used
Pipette micromanipulator- Model ROE-200 Sutter MP-285 / ROE-200 / MPC-200 A similar alternative can be used
Potassium Chloride Sigma P3911 An identical alternative can be used
Sodium Bicarbonate Sigma S5761 An identical alternative can be used
Sodium Chloride Sigma S5886 An identical alternative can be used
Stimulator- Model Omnical 2010 World precision instruments Omnical 2010 A similar alternative can be used
Triton X 100 Sigma T8787 An identical alternative can be used
Vibratome- Model #3000 Pelco 100-S A similar alternative can be used

References

  1. Khakh, B. S., Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience. 18 (7), 942-952 (2015).
  2. Ben Haim, L., Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience. 18 (1), 31-41 (2017).
  3. Schiweck, J., Eickholt, B. J., Murk, K. Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease. Frontiers in Cellular Neuroscience. 12, 261 (2018).
  4. Chai, H., et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron. 95 (3), 531-549 (2017).
  5. Sun, D., Jakobs, T. C. Structural remodeling of astrocytes in the injured CNS. Neuroscientist. 18 (6), 567-588 (2012).
  6. Naskar, S., Chattarji, S. Stress Elicits Contrasting Effects on the Structure and Number of Astrocytes in the Amygdala versus Hippocampus. eNeuro. 6 (1), (2019).
  7. Sun, D., Lye-Barthel, M., Masland, R. H., Jakobs, T. C. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. Journal of Comparative Neurology. 516 (1), 1-19 (2009).
  8. Grosche, A., et al. Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS ONE. 8 (7), 69143 (2013).
  9. Kaynig, V., et al. Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Medical Image Analysis. 22 (1), 77-88 (2015).
  10. Bushong, E. A., Martone, M. E., Jones, Y. Z., Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. Journal of Neuroscience. 22 (1), 183-192 (2002).
  11. Wilhelmsson, U., et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proceedings of the National Academy of Sciences of the United States of America. 103 (46), 17513-17518 (2006).
  12. Williams, M. E., et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron. 71 (4), 640-655 (2011).
  13. Ogata, K., Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 113 (1), 221-233 (2002).
  14. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  15. Hubbard, J. A., Hsu, M. S., Seldin, M. M., Binder, D. K. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro. 7 (5), (2015).
  16. Benediktsson, A. M., et al. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. Journal of Neuroscience Methods. 141 (1), 41-53 (2005).
  17. Fouquet, C., et al. Improving axial resolution in confocal microscopy with new high refractive index mounting media. PLoS ONE. 10 (3), 0121096 (2015).
  18. Luna, G., et al. Astrocyte structural reactivity and plasticity in models of retinal detachment. Experimental Eye Research. 150, 4-21 (2016).
  19. Octeau, J. C., et al. An Optical Neuron-Astrocyte Proximity Assay at Synaptic Distance Scales. Neuron. 98 (1), 49-66 (2018).
  20. Sosunov, A. A., et al. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. Journal of Neuroscience. 34 (6), 2285-2298 (2014).
  21. Park, Y. M., et al. Astrocyte Specificity and Coverage of hGFAP-CreERT2 [Tg(GFAP-Cre/ERT2)13Kdmc] Mouse Line in Various Brain Regions. Experimental Neurobiology. 27 (6), 508-525 (2018).
  22. Koeppen, J., et al. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. Journal of Neuroscience. 38 (25), 5710-5726 (2018).
  23. Jefferis, G. S., Livet, J. Sparse and combinatorial neuron labelling. Current Opinion in Neurobiology. 22 (1), 101-110 (2012).
  24. Lanjakornsiripan, D., et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nature Communications. 9 (1), 1623 (2018).
check_url/60225?article_type=t

Play Video

Cite This Article
Moye, S. L., Diaz-Castro, B., Gangwani, M. R., Khakh, B. S. Visualizing Astrocyte Morphology Using Lucifer Yellow Iontophoresis. J. Vis. Exp. (151), e60225, doi:10.3791/60225 (2019).

View Video